We present simulation and experimental results showing circular polarization is more tolerant of optical collection geometry (field of view and collection area) variations than linear polarization for forward-scattering environments. Circular polarization also persists superiorly in the forward-scattering environment compared to linear polarization by maintaining its degree of polarization better through increasing optical thicknesses. In contrast, both linear and circular polarizations are susceptible to collection geometry variations for isotropic-scattering (Rayleigh regime) environments, and linear polarization maintains a small advantage in polarization persistence. Simulations and measurements are presented for laboratory-based environments of polystyrene microspheres in water. Particle diameters were 0.0824 μm (for isotropic-scattering) and 1.925 μm (for forward-scattering) with an illumination wavelength of 543.5 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.55.009042DOI Listing

Publication Analysis

Top Keywords

collection geometry
12
circular polarization
12
linear polarization
12
geometry variations
8
variations linear
8
linear circular
8
polarization
8
polarization persistence
8
forward-scattering environments
8
linear
5

Similar Publications

Purpose: Previous studies show that transgender and gender-diverse (TGD) individuals, especially those assigned male at birth (AMAB), often have low bone mineral density (BMD) before beginning gender-affirming hormone therapy (GAHT). The reasons for this are not fully understood, and the potential role of androgen receptor (AR) polymorphisms - known to affect bone density in the general population - has not been explored. This study aims to assess the impact of AR polymorphisms on bone health in the TGD population.

View Article and Find Full Text PDF

Interfacial fluid manipulation with bioinspired strategies: special wettability and asymmetric structures.

Chem Soc Rev

January 2025

School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.

The inspirations from nature always enlighten us to develop advanced science and technology. To survive in complicated and harsh environments, plants and animals have evolved remarkable capabilities to control fluid transfer sophisticated designs such as wettability contrast, oriented micro-/nano-structures, and geometry gradients. Based on the bioinspired structures, the on-surface fluid manipulation exhibits spontaneous, continuous, smart, and integrated performances, which can promote the applications in the fields of heat transfer, microfluidics, heterogeneous catalysis, water harvesting, Although fluid manipulating interfaces (FMIs) have provided plenty of ideas to optimize the current systems, a comprehensive review of history, classification, fabrication, and integration focusing on their interfacial chemistry and asymmetric structure is highly required.

View Article and Find Full Text PDF

The photocatalytic efficiency of TiO has been opposed by the fast recombination speed of photogenerated carriers. Here, g-CN -modified sulfate-built-in TiO quantum dots (ST-QDs) were successfully created using a simple ultrasonication-thermal procedure. g-CN-enrapped ST QDs with a 10 nm size were revealed by the characterization results.

View Article and Find Full Text PDF

Pulmonary mucus serves as a crucial protective barrier in the respiratory tract, defending against pathogens and contributing to effective clearance mechanisms. In Muco Obstructive Pulmonary Diseases (MOPD), abnormal rheological properties lead to highly viscous mucus, fostering chronic infections and exacerbations. While prior research has linked mucus viscoelasticity to its mucin content, the variability in MOPD patients implies the involvement of other factors.

View Article and Find Full Text PDF

This study aimed to develop an algorithm for modelling tooth-tooth or implant-implant support configurations for a given 4-unit fixed partial denture (FPD). : The algorithm was implemented in Rhinoceros/Grasshopper to automatically generate geometries with varying bone loss (0 mm to 3 mm), support type (tooth-tooth and implant-implant support) and bone quality (D1 to D4) for a 4-unit FPD. Afterward, a finite element analysis was carried out with a load applied to the central connector of the FPD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!