Keeping patients safe is a core nursing duty. The dynamic nature of the healthcare environment requires that nurses practice to the full extent of their education, experience, and role to keep patients safe. Research has focused on error causation rather than error recovery, a process that occurs before patient harm ensues. In addition, little is known about the role nurses play in error recovery. A descriptive cross-sectional, correlational study using a sample of 184 nurses examined relationships between nurse characteristics, organizational factors, and recovery of medical errors among medical-surgical nurses in hospitals. In this article, we provide background information to introduce the concept of error recovery, and present our study aims and methods. Study results suggested that medical-surgical nurses recovered on average 22 medical errors and error recovery was positively associated with education and expertise. The discussion section further considers the important role of medical-surgical nurses and error recovery to enhance patient safety. In conclusion, we suggest that creating a safer healthcare system will depend on the ability of nurses to fully use their education, expertise and role to identify, interrupt, and correct medical errors; thereby, preventing patient harm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3912/OJIN.Vol21No03Man06 | DOI Listing |
J Intensive Med
January 2025
Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
Background: Receptor-interacting protein kinase 1 (RIPK1), a serine/threonine protein kinase, is mainly activated by pro-inflammatory cytokines and pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and its activation could result in apoptosis, necroptosis, or inflammation. This study was conducted to evaluate the safety and efficacy of a potent and selective inhibitor of RIPK1, SIR1-365, in hospitalized patients with severe coronavirus disease 2019 (COVID-19).
Methods: This multicenter, randomized, double-blind, phase 1b study screened patients from December 18, 2020 until November 27, 2021.
Sensors (Basel)
January 2025
Department of Economics and Management, Russian University of Cooperation, 420034 Kazan, Russia.
The process of establishing relay protection and automation (RPA) settings for electric power systems (EPSs) entails complex calculations of operating modes. Traditionally, these calculations are based on symmetrical components, which require the building of equivalent circuits of various sequences. This approach can lead to errors both when identifying the operating modes and when modeling the RPA devices.
View Article and Find Full Text PDFBiomolecules
January 2025
United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA.
Tea tree oil (TTO), acquired from (Maiden & Betche) Cheel, Myrtaceae, is a widely utilized essential oil (EO) due to its bioactive properties. The identification and quantification of TTO ingredients is generally performed by GC-MS, which provides the most accurate results. However, in some instances, the cost and time of analysis may pose a challenge.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Istanbul University-Cerrahpasa, Faculty of Engineering, Chemical Engineering Department, Avcilar, Istanbul 34320, Turkey. Electronic address:
Medicinal and aromatic plants are alternative products to synthetics because of their antioxidant, antimicrobial, anti-inflammatory and antidiabetic effects. The objective of this study is to investigate the automated solvent extraction (ASE) process parameters for the extraction of bioactive-rich substances from purple basil (Ocimum basilicum L.).
View Article and Find Full Text PDFMed Phys
January 2025
Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
Background: Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!