The Efflux Transporter ABCG2 Maintains Prostate Stem Cells.

Mol Cancer Res

Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York.

Published: February 2017

Unlabelled: Prostate stem cells (PSC) are characterized by their intrinsic resistance to androgen deprivation therapy (ADT), possibly due to the lack of androgen receptor (AR) expression. PSCs resistance to ADT and PSC expansion in castration resistant prostate cancer (CRPC) has sparked great interest in using differentiation therapy as an adjuvant to ADT. Understanding the mechanisms, by which PSCs maintain their undifferentiated phenotype, thus has important implications in differentiation therapy. In the prostate, the ATP binding cassette sub-family G member 2 (ABCG2) transporters, which enrich for AR-positive, ADT-resistant PSCs, play an important role in regulating the intracellular androgen levels by effluxing androgens. We hypothesized that the ABCG2-mediated androgen efflux is responsible for maintaining PSCs in an undifferentiated state. Using the HPr-1-AR (nontumorigenic) and CWR-R1 (tumorigenic) prostate cell lines, it was demonstrated that inhibiting the ABCG2-mediated androgen efflux, with Ko143 (ABCG2 inhibitor), increased the nuclear AR expression due to elevated intracellular androgen levels. Increased nuclear translocation of AR is followed by increased expression of AR regulated genes, a delayed cell growth response, and increased luminal differentiation. Furthermore, Ko143 reduced tumor growth rates in mice implanted with ABCG2-expressing CWR-R1 cells. In addition, Ko143-treated mice had more differentiated tumors as evidenced by an increased percentage of CK8/AR luminal cells and decreased percentage of ABCG2-expressing cells. Thus, inhibiting ABCG2-mediated androgen efflux forces the PSCs to undergo an AR-modulated differentiation to an ADT-sensitive luminal phenotype.

Implications: This study identifies the mechanism by which the prostate stem cell marker, ABCG2, plays a role in prostate stem cell maintenance and provides a rationale for targeting ABCG2 for differentiation therapy in prostate cancer. Mol Cancer Res; 15(2); 128-40. ©2016 AACR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290130PMC
http://dx.doi.org/10.1158/1541-7786.MCR-16-0270-TDOI Listing

Publication Analysis

Top Keywords

prostate stem
16
differentiation therapy
12
abcg2-mediated androgen
12
androgen efflux
12
prostate
8
stem cells
8
prostate cancer
8
therapy prostate
8
intracellular androgen
8
androgen levels
8

Similar Publications

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Doublecortin-like kinase 1 (DCLK1) has been revealed to be involved in modulating cancer stemness and tumor progression, but its role in prostate cancer (PCa) remains obscure. Castration-resistant and metastatic PCa exhibit aggressive behaviors, and current therapeutic approaches have shown limited beneficial effects on the overall survival rate of patients with advanced PCa. This study aimed to investigate the biological role and potential molecular mechanism of DCLK1 in the progression of PCa.

View Article and Find Full Text PDF

Despite its important pharmacological bioactivities, betulinic acid is still primarily obtained through extraction from heartwood and bark or synthesized synthetically, with less than 3% efficiency. Our endemic rose species, Rosa pisiformis (Christ.) D.

View Article and Find Full Text PDF

Unlabelled: Inadequate response to androgen deprivation therapy (ADT) frequently arises in prostate cancer, driven by cellular mechanisms that remain poorly understood. Here, we integrated single-cell RNA sequencing, single-cell multiomics, and spatial transcriptomics to define the transcriptional, epigenetic, and spatial basis of cell identity and castration response in the mouse prostate. Leveraging these data along with a meta-analysis of human prostates and prostate cancer, we identified cellular orthologs and key determinants of ADT response and resistance.

View Article and Find Full Text PDF

Humans have more than 270,000 lncRNAs. Among these, lncRNA HOXA-AS2 is considered a transformative gene involved in various cellular processes, including cell proliferation, apoptosis, migration, and invasion. Thus, it can be regarded as a potential tumor marker for both diagnosis and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!