Hairy cells are classified as B cell tumors at a preplasma cell stage of differentiation and are believed to represent cells undergoing a switch process. These cells are stimulated in vitro to DNA synthesis and multiplication in the presence of the lymphokine LMW-BCGF. We have tested the level of expression on these cells of the newly described B8.7 activation marker which has been reported to be associated with the capacity of various B cells to respond to LMW-BCGF. The presence of this marker has been readily detected on the hairy cells of 10 of the 12 patients tested in this study; interestingly, for one of the negative cases, the tumor cells were unable to proliferate in response to LMW-BCGF. As on normal B cells, a marked inhibition of the LMW-BCGF dependent response could be achieved in the presence of a monoclonal anti-B8.7 antibody, sustaining the proposal that the B8.7 molecule is involved in the signaling pathway of this growth factor. IFN-alpha is highly efficient in the therapy of hairy cell leukemia (HCL), and we confirm in the present study that IFN-alpha also inhibits the LMW-BCGF dependent proliferation of hairy cells in vitro. In addition, we show that this inhibition is independent of a significant modulation of the B8.7 antigen, a molecule putatively associated with the LMW-BCGF receptor.
Download full-text PDF |
Source |
---|
Carbohydr Polym
March 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada. Electronic address:
The synergy between nanomaterials as solid supports and supramolecular concepts has resulted in nanomaterials with hierarchical structure and enhanced functionality. Herein, we developed and investigated innovative supramolecular functionalities arising from the synergy between organic moieties and the preexisting nanoscale soft material backbones. Based on these complex molecular nano-architectures, a new nanorod carbohydrate polymer carrier was designed with bifunctional hairy nanocellulose (BHNC) to reveal dual-responsive advanced drug delivery (ADD).
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.
This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
Proteomics has become a powerful approach for the identification and characterization of type III effectors (T3Es). Members of the species complex (RSSC) deploy T3Es to manipulate host cells and to promote root infection of, among others, a wide range of solanaceous plants such as tomato, potato, and tobacco. Here, we used TurboID-mediated proximity labeling (PL) in tomato hairy root cultures to explore the proxeomes of the core RSSC T3Es RipU, RipD, and RipB.
View Article and Find Full Text PDFMol Genet Genomics
January 2025
Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Christian-Albrechts-University of Kiel, 24118, Kiel, Germany.
Brassica villosa is characterized by its dense hairiness and high resistance against the fungal pathogen Sclerotinia sclerotiorum. Information on the genetic and molecular mechanisms governing trichome development in B. villosa is rare.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.
The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!