Inhibition of STAT Pathway Impairs Anti-Hepatitis C Virus Effect of Interferon Alpha.

Cell Physiol Biochem

Department of Microbiology, Shanghai Key Laboratory of Medical Biodefence, Second Military Medical University, Shanghai, China.

Published: February 2017

Background/aims: Signal transducer and activator of transcription (STAT) pathway plays an important role in antiviral efficacy of interferon alpha (IFN-α). IFN-α is the main therapeutic against hepatitis C virus (HCV) infection. We explored effects of IFN-α on HCV replication and antiviral gene expression by targeting STAT.

Methods: In response to IFN-α, STAT status, HCV replication, and antiviral gene expression were analyzed in human hepatoma Huh7.5.1 cells before and after cell culture-derived HCV infection.

Results: IFN-α treatment induced expression and phosphorylation of STAT1 and STAT2 in Huh7.5.1 cells. Pretreatment of Huh7.5.1 cells with a mAb to IFN alpha receptor (IFNAR) 2 decreased IFN-α-dependent phosphorylation of STAT1 and STAT2, whereas pretreatment with an IFNAR1 mAb increased such phosphorylation, suggesting that IFNAR mediates IFN-α-triggered STAT signaling. During HCV infection, STAT1 and STAT2 phosphorylation could be rescued by IFN-α and IFN-α-induced phosphorylation of STAT1 and STAT2 was impaired. Inhibition of STAT pathway by Jak inhibitor I significantly enhanced HCV RNA replication and viral protein expression. Antiviral genes coding for IFN regulatory factor 9 and IFN-stimulated gene 15 were up-regulated by IFN-α during HCV infection but such up-regulation was abrogated by Jak inhibitor I.

Conclusion: These results establish that activation of STAT pathway is essential for anti-HCV efficacy of IFN-α. Impairment of IFN-α-triggered STAT signaling by HCV may account for evading IFN-α response.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000452526DOI Listing

Publication Analysis

Top Keywords

stat pathway
16
stat1 stat2
16
hcv infection
12
huh751 cells
12
phosphorylation stat1
12
ifn-α
9
inhibition stat
8
interferon alpha
8
hcv
8
ifn-α hcv
8

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) stands as the sixth most common cause of cancer-related mortality on a global scale, with a strikingly high proportion-over half-of these fatalities occurring within China. The emergence of radiation resistance in ESCC patients significantly diminishes overall survival rates, complicating treatment regimens and reducing clinical outcomes. There is an urgent need to explore the molecular mechanisms that underpin radiation resistance in ESCC, which could lead to the identification of new therapeutic targets aimed at overcoming this resistance.

View Article and Find Full Text PDF

Unveiling the Effect of Age and IgE Level on Alopecia Areata: Insights from Comparative RNAseq Analysis.

Clin Cosmet Investig Dermatol

January 2025

Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, People's Republic of China.

Background: Alopecia areata (AA) is a common autoimmune disease, causes sudden hair loss on the scalp, face, and sometimes other areas of the body. Previous studies have suggested more severe manifestations and higher recurrence rates in children than in adults. Moreover, pediatric AA patients with atopic predisposition often exhibit elevated IgE levels, early onset, and a poor prognosis.

View Article and Find Full Text PDF

Development of a highly efficient microbial fermentation process of recombinant Escherichia coli for GABA production from glucose.

J Biotechnol

January 2025

Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea. Electronic address:

This study was aimed to develop a highly productive microbial fermentation process for gamma-aminobutyric acid (GABA) production from glucose. For this, an efficient GABA-producing E. coli strain was firstly developed through metabolic engineering with a strategy of increasing the flux of GABA biosynthetic pathway and deleting or repressing the GABA shunt pathways that compete with GABA biosynthesis.

View Article and Find Full Text PDF

The Janus kinase/signal transducer and activator of transfection (JAK/STAT) system is comprised of multiple cell surface receptors, receptor tyrosine kinases, and signal transducers that are key components of numerous systems involved in malignancy, inflammation, immune surveillance and development, cellular proliferation, metabolism, differentiation, apoptosis, and hematologic disorders, all of which when disrupted can produce severe disease. Nevertheless, small molecule inhibitors of the four known JAKs, termed JAKinibs, have found therapeutic indications for a broad category of diseases. In this perspective, I will summarize the development of JAK inhibitors, whose origins were in antiquity, with particular attention to their use in treating patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by immune dysregulation and excessive cytokine production. This study aimed to explore the potential of Camellia sinensis L. water extract (CSE) as a treatment for AD by the impact of CSE on inflammatory responses in keratinocytes, particularly concerning the production of inflammatory cytokines and the modulation of signaling pathways relevant to AD pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!