Horizontal gene transfer may occur between distantly related bacteria, thus leading to genetic plasticity and in some cases to acquisition of novel resistance traits. Proteus mirabilis is an enterobacterial species responsible for human infections that may express various acquired β-lactam resistance genes, including different classes of carbapenemase genes. Here we report a Proteus mirabilis clinical isolate (strain 1091) displaying resistance to penicillin, including temocillin, together with reduced susceptibility to carbapenems and susceptibility to expanded-spectrum cephalosporins. Using biochemical tests, significant carbapenem hydrolysis was detected in P. mirabilis 1091. Since PCR failed to detect acquired carbapenemase genes commonly found in Enterobacteriaceae, we used a whole-genome sequencing approach that revealed the presence of bla class D carbapenemase gene, so far identified only in Acinetobacter species. This gene was located on a 3.1-kb element coharboring a bla-like gene. Remarkably, these two genes were bracketed by putative XerC-XerD binding sites and inserted at a XerC-XerD site located between the terminase-like small- and large-subunit genes of a bacteriophage. Increased expression of the two bla genes resulted from a 6-time tandem amplification of the element as revealed by Southern blotting. This is the first isolation of a clinical P. mirabilis strain producing OXA-58, a class D carbapenemase, and the first description of a XerC-XerD-dependent insertion of antibiotic resistance genes within a bacteriophage. This study revealed a new role for the XerC-XerD recombinase in bacteriophage biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278702 | PMC |
http://dx.doi.org/10.1128/AAC.01697-16 | DOI Listing |
Front Microbiol
January 2025
Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China.
Background: is a conditionally pathogenic bacterium that is inherently resistant to polymyxin and tigecycline, largely due to antibiotic resistance genes (ARGs). These ARGs can be horizontally transferred to other bacteria, raising concerns about the Inc plasmid-mediated ARG transmission from , which poses a serious public health threat. This study aims to investigate the presence of Inc plasmid types in pig-derived in Kunming, Yunnan, China.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Fisheries and Marine Resources Technology Discipline, Khulna University, Khulna, 9208, Bangladesh.
Infections caused by antibiotic-resistant bacteria (ARB) result in an estimated 1.27 million human deaths annually worldwide. Surface waters are impacted by anthropogenic factors, which contribute to the emergence and spread of ARB in the aquatic environment.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
Introduction: Multidrug-resistant (MDR) bacteria like Proteus species have led to more prolonged hospitalizations, fewer care choices, higher treatment costs, and even death. The present study aims to evaluate the prevalence of MDR Proteus species in clinical samples and to suggest the best therapeutic options for the MDR Proteus species.
Methodology: Clinical samples were collected randomly from five hospitals in Golestan Province, Iran, from February 2017 to July 2019.
Front Cell Infect Microbiol
January 2025
The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Objective: To establish a rapid detection method for canine using recombinase-aided amplification (RAA) technology.
Methods: The outer membrane protein 25 gene fragment (Omp25) of canis was targeted. Primers and fluorescent probes were designed and synthesized, and recombinant plasmids were constructed as standards.
PeerJ
January 2025
Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
An innovative approach to ticks and insect pests management is necessary to mitigate the challenges posed by the indiscriminate use of chemical pesticides, which can lead to resistance development and environmental pollution. Despite their great potential, biological control agents have significant manufacturing, application, and stability limitations. Currently, using phytochemicals, biosynthesized nanoparticles, and bioagents to get rid of arthropods might be a good alternative that would make farmers less worried about residues and resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!