AI Article Synopsis

  • Affinity purification coupled to mass spectrometry (AP-MS) often misses identifying dynamic protein-protein interactions, especially with membrane proteins, leading to low bait yields.
  • The new method CoPIT (co-interacting protein identification technology) enhances the analysis of membrane protein interactomes, integrating experimental and computational techniques for better identification and visualization of protein interactions.
  • CoPIT shows significant improvements with up to 100-fold higher bait yield for membrane proteins like CFTR, while also being applicable to various protein types; the entire experimental process takes less than 3 days, but data analysis may take weeks.

Article Abstract

Affinity purification coupled to mass spectrometry (AP-MS) is the method of choice for analyzing protein-protein interactions, but common protocols frequently recover only the most stable interactions and tend to result in low bait yield for membrane proteins. Here, we present a novel, deep interactome sequencing approach called CoPIT (co-interacting protein identification technology), which allows comprehensive identification and analysis of membrane protein interactomes and their dynamics. CoPIT integrates experimental and computational methods for a coimmunoprecipitation (Co-IP)-based workflow from sample preparation for mass spectrometric analysis to visualization of protein-protein interaction networks. The approach particularly improves the results for membrane protein interactomes, which have proven to be difficult to identify and analyze. CoPIT was used successfully to identify the interactome of the cystic fibrosis transmembrane conductance regulator (CFTR), demonstrating its validity and performance. The experimental step in this case achieved up to 100-fold-higher bait yield than previous methods by optimizing lysis, elution, sample clean-up and detection of interacting proteins by multidimensional protein identification technology (MudPIT). Here, we further provide evidence that CoPIT is applicable to other types of proteins as well, and that it can be successfully used as a general Co-IP method. The protocol describes all steps, ranging from considerations for experimental design, Co-IP, preparation of the sample for mass spectrometric analysis, and data analysis steps, to the final visualization of interaction networks. Although the experimental part can be performed in <3 d, data analysis may take up to a few weeks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444904PMC
http://dx.doi.org/10.1038/nprot.2016.140DOI Listing

Publication Analysis

Top Keywords

protein identification
12
identification technology
12
deep interactome
8
membrane proteins
8
co-interacting protein
8
bait yield
8
membrane protein
8
protein interactomes
8
mass spectrometric
8
spectrometric analysis
8

Similar Publications

Total synthesis and target identification of marine cyclopiane diterpenes.

Nat Commun

December 2024

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.

View Article and Find Full Text PDF

The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry.

Nat Commun

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.

View Article and Find Full Text PDF

Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.

View Article and Find Full Text PDF

Integrated multi-omics profiling reveals neutrophil extracellular traps potentiate Aortic dissection progression.

Nat Commun

December 2024

Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.

Adverse aortic remodeling increases the risk of aorta-related adverse events (AAEs) after thoracic endovascular aortic repair (TEVAR) and affects the overall prognosis of aortic dissection (AD). It is imperative to delve into the exploration of prognostic indicators to streamline the identification of individuals at elevated risk for postoperative AAEs, and therapeutic targets to optimize the efficacy of TEVAR for patients with AD. Here, we perform proteomic and single-cell transcriptomic analyses of peripheral blood and aortic lesions, respectively, from patients with AD and healthy subjects.

View Article and Find Full Text PDF

Morphological, Anatomical, and Histochemical Study of Cordia diffusa K.C. Jacob-A Steno Endemic Plant.

Microsc Res Tech

December 2024

Department of Botany, Root and Soil Biology Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India.

Cordia diffusa K.C. Jacob, known as Sirunaruvili, belonging to the family Boraginaceae, is a rare endemic species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!