AI Article Synopsis

Article Abstract

Background: Charcot-Marie-Tooth (CMT) and associated neuropathies, the most common inherited diseases of the peripheral nervous system, remain so far incurable. Three existing murine models of Charcot-Marie-Tooth type 2F (CMT2F) and/or distal hereditary motor neuropathy type IIb (dHMNIIb), caused by mutations in the small heat shock protein B1 gene (HSPB1/HSP27), partially recapitulate the hallmarks of peripheral neuropathy. Because these models overexpress the HSPB1 mutant proteins they differ from the patients' situation.

Objective: To overcome the possible bias induced by overexpression, we generated and characterized a transgenic model in which the wild type or mutant HSPB1 protein was expressed at a moderate, more physiologically relevant level.

Methods: We generated a new transgenic mouse model in which a human wild type (hHSPB1WT) or mutant (hHSPB1R127W; hHSPB1P182L) HSPB1 transgene was integrated in the mouse ROSA26 locus. The motor and sensory functions of the mice was assessed at 3, 6, 9, 12 and 18 month.

Results: However, the mice expressing the mutant hHSPB1 do not develop motor or sensory deficits and do not show any sign of axonal degeneration, even at late age. Quantitative PCR analyses reveal contrasting tissue-specific expression pattern for the endogenous mouse and exogenous human HSPB1 and show that the ratio of human HSPB1 to the endogenous mouse HspB1 is lower in the sciatic nerve and spinal cord compared to the brain.

Conclusion: These results suggest that expressing the transgene at a physiological level using the ROSA26 locus may not be sufficient to model inherited peripheral neuropathies caused by mutation in HSPB1.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JND-150144DOI Listing

Publication Analysis

Top Keywords

rosa26 locus
12
transgenic mouse
8
hspb1
8
wild type
8
motor sensory
8
endogenous mouse
8
human hspb1
8
mouse
5
characterization transgenic
4
mouse models
4

Similar Publications

Diverse Cre recombinase expression pattern in Albumin-Cre driver rats.

Exp Anim

January 2025

Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo.

Rats (Rattus norvegicus) have been widely utilized as model animals due to their physiological characteristics, making them suitable for surgical and long-term studies. They have played a crucial role in biomedical research, complementing studies conducted in mice. The advent of genome editing technologies has facilitated the generation of genetically modified rat strains, advancing studies in experimental animals.

View Article and Find Full Text PDF

A new effLuc/Kate dual reporter allele for tumour imaging in mice.

Dis Model Mech

January 2025

Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria.

Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo.

View Article and Find Full Text PDF

The homeodomain protein homeobox (HOPX), a multifaceted regulator of cellular functions and developmental processes, is predominantly expressed in stem cells across diverse tissues; it has also emerged as a tumour suppressor in various solid cancers. However, its role in haematological malignancies still remains undefined. This study aimed to elucidate its significance in T-cell acute lymphoblastic leukaemia (T-ALL).

View Article and Find Full Text PDF

While previous research has demonstrated the therapeutic efficacy of telomerase reverse transcriptase (TERT) overexpression using adeno-associated virus and cytomegalovirus vectors to combat aging, the broader implications of TERT germline gene editing on the mammalian genome, proteomic composition, phenotypes, lifespan extension, and damage repair remain largely unexplored. In this study, we elucidate the functional properties of transgenic mice carrying the Tert transgene, guided by precise gene targeting into the Rosa26 locus via embryonic stem (ES) cells under the control of the elongation factor 1α (EF1α) promoter. The Tert knock-in (TertKI) mice harboring the EF1α-Tert gene displayed elevated telomerase activity, elongated telomeres, and extended lifespan, with no spontaneous genotoxicity or carcinogenicity.

View Article and Find Full Text PDF

Exogenous expression of ATP8, a mitochondrial encoded protein, from the nucleus .

Mol Ther Methods Clin Dev

December 2024

SENS Research Foundation, Mountain View, CA 94041, USA.

Replicative errors, inefficient repair, and proximity to sites of reactive oxygen species production make mitochondrial DNA (mtDNA) susceptible to damage with time. We explore allotopic expression (re-engineering mitochondrial genes and expressing them from the nucleus) as an approach to rescue defects arising from mtDNA mutations. We used a mouse strain C57BL/6J(mtFVB) with a natural polymorphism (m.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!