Biosynthesis of Glycomonoterpenes to Attenuate Quorum Sensing Associated Virulence in Bacteria.

Appl Biochem Biotechnol

Biochemistry Division, CSIR, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.

Published: April 2017

The acquisition of multidrug resistance in bacteria has become a bigger threat of late, mainly due to the bacterial signaling phenomenon, quorum sensing (QS). QS, among a population of bacteria, initiates the formation of biofilms and offers myriad advantages to bacteria. Burgeoning antibiotic resistance in biofilm-producing bacteria has motivated efforts toward finding new alternatives to these traditional antimicrobials. In the present study, we report the increased solubility and additional quorum quenching as well as biofilm disruption activity of glyco-derivatives of monoterpenes (citral and citronellal). Glycomonoterpenes of citral and citronellal were synthesized via conjugation of the monoterpenes with glucose by the non-pathogenic yeast Candida bombicola (ATCC 22214). Structural elucidation of newly synthesized glycomonoterpenes showed that one synthesized using citronellal contains three major lactonic forms with molecular weight 492.43, 473.47, and 330.39 Da whereas the one produced using citral has an acidic form with molecular weight 389.33 and 346.23 Da. The glycomonoterpenes were able to individually inhibit QS, mediated through various medium-chain and long-chain N-acyl homoserine lactones (AHLs). These new compounds are interesting additions to the known range of quorum sensing inhibitors (QSIs) and could be further explored for potential clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-016-2300-8DOI Listing

Publication Analysis

Top Keywords

quorum sensing
12
citral citronellal
8
molecular weight
8
bacteria
5
biosynthesis glycomonoterpenes
4
glycomonoterpenes attenuate
4
quorum
4
attenuate quorum
4
sensing associated
4
associated virulence
4

Similar Publications

Pyomelanogenic P. aeruginosa, frequently isolated from patients with urinary tract infections and cystic fibrosis, possesses the ability to withstand oxidative stress, contributing to virulence and resulting in persistent infections. Whole genome sequence analysis of U804, a pyomelanogenic, multidrug-resistant, clinical isolate, demonstrates the mechanism underlying pyomelanin overproduction.

View Article and Find Full Text PDF

Enhancement of aerobic sludge granulation by quorum sensing signaling molecules mediated by biomimetic bacterial extracellular vesicles.

J Environ Manage

January 2025

Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China. Electronic address:

The addition of exogenous quorum sensing signaling molecules to the activated sludge system enables rapid sludge granulation. However, signaling molecules exposed to the environment are easily degraded, and their quorum sensing effects cannot be maintained in the long term. Therefore, they must be frequently added, which leads to an increase in operational costs.

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.

View Article and Find Full Text PDF

Quorum sensing controls numerous processes ranging from the production of virulence factors to biofilm formation. Biofilms, communities of bacteria that are attached to one another and/or a surface, are common in nature, and when they form, they can produce a quorum of bacteria. One model system to study biofilms is the bacterium , which forms a biofilm that promotes the colonization of its symbiotic host.

View Article and Find Full Text PDF

Bioorganic compounds in quorum sensing disruption: strategies, Mechanisms, and future prospects.

Bioorg Chem

January 2025

Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India. Electronic address:

Recent research has shed light on the complex world of bacterial communication through quorum sensing. This sophisticated intercellular signalling mechanism, driven by auto-inducers, regulates crucial bacterial community behaviours such as biofilm formation, expression of virulence factors, and resistance mechanisms. The increasing threat of antibiotic resistance, coupled with quorum sensing mediated response, necessitates alternative strategies to combat bacterial infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!