Purification of Yeast Native Reagents for the Analysis of Chromatin Function-II: Multiprotein Complexes and Biochemical Assays.

Methods Mol Biol

St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, CHU de Québec Research Center- Oncology axis, Hôtel-Dieu de Québec, 9 McMahon Street, Quebec City, QC, Canada, G1R 3S3.

Published: January 2018

Post-translational modifications of histones play essential roles in regulating chromatin structure and function. These are tightly regulated in vivo and there is an intricate cross-talk between different marks as they are recognized by specific reader modules present in a large number of nuclear factors. In order to precisely dissect these processes in vitro native reagents like purified chromatin and histone modifying/remodeling enzymes are required to more accurately reproduce physiological conditions. The vast majority of these enzymes need to be part of stable multiprotein complexes with cofactors enabling them to act on chromatin substrates and/or read specific histone marks. In the accompanying chapter, we have described the protocol for purification of native chromatin from yeast cells (Chapter 3 ). Here, we present the methods to obtain highly purified native chromatin modifying complexes from Saccharomyces cerevisiae, based on Tandem Affinity Purification (TAP). We also present possible applications and useful functional assays that can be performed using these yeast native reagents.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6630-1_4DOI Listing

Publication Analysis

Top Keywords

native reagents
12
yeast native
8
multiprotein complexes
8
native chromatin
8
chromatin
6
native
5
purification yeast
4
reagents analysis
4
analysis chromatin
4
chromatin function-ii
4

Similar Publications

We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner.

View Article and Find Full Text PDF

While all native tRNAs undergo extensive post-transcriptional modifications as a mechanism to regulate gene expression, mapping these modifications remains challenging. The critical barrier is the difficulty of readthrough of modifications by reverse transcriptases (RTs). Here we use Induro-a new group-II intron-encoded RT-to map and quantify genome-wide tRNA modifications in Induro-tRNAseq.

View Article and Find Full Text PDF

A vast sum of fish waste is being annually discarded by marine fishing industries imposing serious environmental pollution concerns. However, these aquatic discarded matters are captivating sources of collagen, a fibrous protein with eminent social and economic relevance. Collagen is conventionally recovered using outdated complex processes requiring many reagents, multiple steps, and extended periods.

View Article and Find Full Text PDF

Dansyl labeling is a widely used approach for enhancing the detection of small molecules by UV spectroscopy and mass spectrometry. It has been successfully applied to identify and quantify a variety of biological and environmental specimens. Despite clear advantages, the dansylation reaction has found very few applications in the study of proteins.

View Article and Find Full Text PDF

In the realm of gene therapy, given the exceptional performance of native exosomes, researchers have redirected their innovative focus towards exosome-mimetic nanovesicles (EMNs); however, the current design of most EMNs relies heavily on native cells or their components, inevitably introducing inter-batch variability issues and posing significant challenges for quality control. To overcome the excessive reliance on native cellular components, this study adopts a unique approach by precisely mimicking the lipid composition of exosomes and innovatively incorporating histone components to recapitulate the gene transfer characteristics of exosomes. We selected sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and cholesterol as the lipid components, and employed the double emulsion method to prepare biomimetic exosomes carrying histone A and PEDF-DNA plasmids (His-pDNA@EMNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!