Purification of Yeast Native Reagents for the Analysis of Chromatin Function-I: Nucleosomes for Reconstitution and Manipulation of Histone Marks.

Methods Mol Biol

St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, CHU de Québec Research Center- Oncology axis, Hôtel-Dieu de Québec, 9 McMahon Street, Quebec City, QC, Canada, G1R 3S3.

Published: January 2018

Purification of native biological material provides powerful tools for the functional analysis of enzymes and proteins in chromatin. In particular, histone proteins harbor numerous post-translational modifications, which may differ between species, tissues, and growth conditions and are lacking on recombinant histones. Moreover, the physiological substrate of most enzymes that modify histones is chromatin and the majority of these enzymes need to be part of a multiprotein assembly to be able to act on chromatin. For the yeast Saccharomyces cerevisiae different chromatin purification protocols are available but often result in poor yields or rely on genetic manipulation. We present a simple purification protocol that can yield up to 150 μg of pure native chromatin per liter of yeast culture. The purified material can be obtained from mutant cells lacking specific histone modifications and can be used in in vitro chromatin assembly for biochemical studies. Based on the extremely high degree of conservation throughout eukaryotes, this modifiable native chromatin can be used in studies with factors from other organisms including humans.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6630-1_3DOI Listing

Publication Analysis

Top Keywords

chromatin
8
native chromatin
8
purification
4
purification yeast
4
native
4
yeast native
4
native reagents
4
reagents analysis
4
analysis chromatin
4
chromatin function-i
4

Similar Publications

Prostate cancer is a heterogeneous disease with a slow progression and a highly variable clinical outcome. The tumor suppressor genes PTEN and TP53 are frequently mutated in prostate cancer and are predictive of early metastatic dissemination and unfavorable patient outcomes. The progression of solid tumors to metastasis is often associated with increased cell plasticity, but the complex events underlying TP53-loss-induced disease aggressiveness remain incompletely understood.

View Article and Find Full Text PDF

DOGMA-seq and multimodal, single-cell analysis in acute myeloid leukemia.

Int Rev Cell Mol Biol

January 2025

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States. Electronic address:

Acute myeloid leukemia (AML) is a complex cancer, yet advances in recent years from integrated genomics methods have helped improve diagnosis, treatment, and means of patient stratification. A recent example of a powerful, multimodal method is DOGMA-seq, which can measure chromatin accessibility, gene expression, and cell-surface protein levels from the same individual cell simultaneously. Previous bimodal single-cell techniques, such as CITE-seq (Cellular indexing of transcriptomes and epitopes), have only permitted the transcriptome and cell-surface protein expression measurement.

View Article and Find Full Text PDF

Revisiting epigenetic regulation in cancer: Evolving trends and translational implications.

Int Rev Cell Mol Biol

January 2025

Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India. Electronic address:

Cancer is a leading cause of mortality worldwide. The evolving role of epigenetics and tumor microenvironments of cancer pose significant challenges to the management of cancer. Besides genetics, epigenetic changes play a crucial role in the alteration of cellular machinery, progression, metastasis, epithelial-mesenchymal transition, and chemoresistance.

View Article and Find Full Text PDF

TET1 participates in oxaliplatin-induced neuropathic pain by regulating microRNA-30b/Nav1.6.

J Biol Chem

January 2025

Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; Institute of Neuroscience, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; School of Nursing and Health, Zhengzhou University, 100 Science venue, Zhengzhou, 450001, China. Electronic address:

Chemotherapy-induced neuropathic pain poses significant clinical challenges and severely impacts patient quality of life. Sodium ion channels are crucial in regulating neuronal excitability and pain. Our research indicates that the microRNA-30b (miR-30b) in rat dorsal root ganglia (DRG) contributes to chemotherapy-induced neuropathic pain by regulating the Nav1.

View Article and Find Full Text PDF

Mina53 catalyzes arginine demethylation of p53 to promote tumor growth.

Cell Rep

January 2025

Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China. Electronic address:

Arginine methylation is a common post-translational modification that plays critical roles in many biological processes. However, the existence of arginine demethylases that remove the modification has not been fully established. Here, we report that Myc-induced nuclear antigen 53 (Mina53), a member of the jumonji C (JmjC) protein family, is an arginine demethylase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!