An Assay for Measuring Histone Variant Exchange within Nucleosomes In Vitro.

Methods Mol Biol

Department of Biology, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, Canada, J1K 2R1.

Published: January 2018

The incorporation of histone variants into specific chromatin regions is a mechanism by which cells can regulate many important biological processes. One such example is H2A.Z, a highly conserved variant of H2A that is incorporated in genomic regulatory regions and contributes to control gene expression. H2A.Z variant exchange involves the removal of H2A-H2B dimers from a preassembled nucleosome and their replacement with H2A.Z-H2B dimers. A specific family of chromatin remodeling complexes, homologous to the yeast Swr1 complex, have been shown to be capable of this histone exchange activity both in vivo and in vitro. Here, we describe an assay to measure the histone H2A.Z exchange activity of recombinant human p400 on immobilized mononucleosomes in vitro. The assay can be adapted to other histone exchange complexes/catalytic subunits purified from any species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6630-1_2DOI Listing

Publication Analysis

Top Keywords

variant exchange
8
histone exchange
8
exchange activity
8
histone
5
exchange
5
assay measuring
4
measuring histone
4
histone variant
4
exchange nucleosomes
4
nucleosomes vitro
4

Similar Publications

Advanced adiabatic compressed air energy storage systems dynamic modelling: Impact of the heat storage device.

Heliyon

January 2025

IFP Energies nouvelles, 1 et 4 avenue de Bois Préau, 92852, Rueil-Malmaison, France.

Advanced Adiabatic Compressed Air Energy Storage (AACAES) is a technology for storing energy in thermomechanical form. This technology involves several equipment such as compressors, turbines, heat storage capacities, air coolers, caverns, etc. During charging or discharging, the heat storage and especially the cavern will induce transient behavior of operating points, notably temperature, pressure, and volume flow.

View Article and Find Full Text PDF

The aim of this study was to compare the mechanical properties of carbon-fiber-reinforced polymer (CFRP) composites produced using three popular technologies. The tests were performed on composites produced from prepregs in an autoclave, the next variant is composites produced using the infusion method, and the third variant concerns composites produced using the vacuum-assisted hand lay-up method. For each variant, flat plates with dimensions of 1000 mm × 1000 mm were produced while maintaining similar material properties and fabric arrangement configuration.

View Article and Find Full Text PDF

Electrochemical energy conversion technologies include proton exchange membrane fuel cells (PEMFCs) where proton interchange is an alternative to diesel distributed generation, and PEMFCs are considered as a promising backup power source and a tool to regulate power consumption. Some of the major benefits of these PEMFCs especially in power system applications include low emission of carbon, fast load following capability, no noise and high start-up reliability. It is challenging to find the best PEMFC parameters because the model is complex and the problem is nonlinear; not all optimization algorithms can solve this problem.

View Article and Find Full Text PDF

Exogenous melatonin enhances heat tolerance in buckwheat seedlings by modulating physiological response mechanisms.

Plant Physiol Biochem

January 2025

Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-la-Neuve, Belgium.

Melatonin (MT) serves as a potent antioxidant in plant organisms, bolstering their resilience to temperature stress. In this study, the impact of MT on various buckwheat varieties under high-temperature stress conditions (40 °C) was investigated. Specifically, five buckwheat seedling varieties, comprising three sweet buckwheat variants (Fagopyrum esculentum) and two bitter buckwheat types (Fagopyrum tataricum), were subjected to foliar sprays of melatonin at concentrations of 50, 100 and 200 μM, with water at 25 °C employed as a control.

View Article and Find Full Text PDF

Macrocyclization or stapling is an important strategy for increasing the conformational stability and target-binding affinity of peptides and proteins, especially in therapeutic contexts. Atomistic simulations of such stapled peptides and proteins could help rationalize existing experimental data and provide predictive tools for the design of new stapled peptides and proteins. Standard approaches exist for incorporating nonstandard amino acids and functional groups into the force fields required for MD simulations and have been used in the context of stapling for more than a decade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!