Recent research suggests that the basement membrane at the dermal-epidermal junction of the skin plays an important role in maintaining a healthy epidermis and dermis, and repeated damage to the skin can destabilize the skin and accelerate the aging process. Skin-equivalent models are suitable for studying the reconstruction of the basement membrane and its contribution to epidermal homeostasis because they lack the basement membrane and show abnormal expression of epidermal differentiation markers. By using these models, it has been shown that reconstruction of the basement membrane is enhanced not only by supplying basement membrane components, but also by inhibiting proteinases such as urokinase and matrix metalloproteinase. Although matrix metalloproteinase inhibitors assist in the reconstruction of the basement membrane structure, their action is not sufficient to promote its functional recovery. However, heparanase inhibitors stabilize the heparan sulfate chains of perlecan (a heparan sulfate proteoglycan) and promote the regulation of heparan sulfate binding growth factors in the basement membrane. Heparan sulfate promotes effective protein-protein interactions, thereby facilitating the assembly of type VII collagen anchoring fibrils and elastin-associated microfibrils. Using both matrix metalloproteinase inhibitors and heparanase inhibitors, the basement membrane in a skin-equivalent model comes close to recapitulating the structure and function of an basement membrane. Therefore, by using an appropriate dermis model and suitable protease inhibitors, it may be possible to produce skin-equivalent models that are more similar to natural skin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070419 | PMC |
http://dx.doi.org/10.2174/2211542005666160725154356 | DOI Listing |
Int Ophthalmol
January 2025
Department of Ophthalmology, Central Theater General Hospital, 627 Wuluo Road, Wuhan, 430070, China.
Purpose: The purpose is to evaluate the effect of drainage from intentional extramacular holes after internal limiting membrane insertion to treat macular hole retinal detachment (MHRD) in highly myopic eyes.
Methods: This study is a retrospective, observational, and comparative case series that included 25 consecutive highly myopic eyes with MHRD. All eyes underwent standard 23-gauge vitrectomy, inverted internal limiting membrane insertion into the macular hole, subretinal fluid drainage from an intentionally created extramacular retinal hole, and tamponade with either silicone oil (SO group, n = 13) or perfluoropropane (CF group, n = 12).
Biochem Biophys Res Commun
January 2025
Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
The glomerular filtration barrier (GFB) has a unique spatial structure, including porous capillary endothelial cells, glomerular basal membrane (GBM) and highly specialized podocytes. This special structure is essential for the hemofiltration process of nephrons. GBM is the central meshwork structure of GFB formed by the assembly and fusion of various extracellular matrix (ECM) macromolecules, such as laminins and collagens, which undergo isoform transformation and maturation that may require precise regulation by metalloproteinases.
View Article and Find Full Text PDFPathol Res Pract
January 2025
Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China.
Anti-vascular endothelial growth factor-associated thrombotic microangiopathy (aVEGF-TMA) was recently discovered in patients with malignant tumors. Four aVEGF-TMA patients diagnosed by renal biopsy between 2018 and 2022 were identified, and all were females aged 30-62 years (mean age, 47 years). Two patients with malignant gastrointestinal stromal tumors who received sunitinib were analyzed.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Immunodermatology, National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Masovian, Poland.
Linear IgA bullous dermatosis (LABD) is a rare subepidermal blistering disorder characterized by the presence of linear IgA deposits at the basement membrane zone (BMZ) by direct immunofluorescence (DIF). This entity was first described by Chorzelski and Jablonska from Warsaw Center of Bullous Diseases, Poland. The disease affects children and adults, whereby they differ in terms of clinical picture and course.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!