Animal models of β-hemoglobinopathies: utility and limitations.

J Blood Med

Cell and Gene Therapy Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.

Published: November 2016

The structural and functional conservation of hemoglobin throughout mammals has made the laboratory mouse an exceptionally useful organism in which to study both the protein and the individual globin genes. Early researchers looked to the globin genes as an excellent model in which to examine gene regulation - bountifully expressed and displaying a remarkably consistent pattern of developmental activation and silencing. In parallel with the growth of research into expression of the globin genes, mutations within the β-globin gene were identified as the cause of the β-hemoglobinopathies such as sickle cell disease and β-thalassemia. These lines of enquiry stimulated the development of transgenic mouse models, first carrying individual human globin genes and then substantial human genomic fragments incorporating the multigenic human β-globin locus and regulatory elements. Finally, mice were devised carrying mutant human β-globin loci on genetic backgrounds deficient in the native mouse globins, resulting in phenotypes of sickle cell disease or β-thalassemia. These years of work have generated a group of model animals that display many features of the β-hemoglobinopathies and provided enormous insight into the mechanisms of gene regulation. Substantive differences in the expression of human and mouse globins during development have also come to light, revealing the limitations of the mouse model, but also providing opportunities to further explore the mechanisms of globin gene regulation. In addition, animal models of β-hemoglobinopathies have demonstrated the feasibility of gene therapy for these conditions, now showing success in human clinical trials. Such models remain in use to dissect the molecular events of globin gene regulation and to identify novel treatments based upon the reactivation of developmentally silenced γ-globin. Here, we describe the development of animal models to investigate globin switching and the β-hemoglobinopathies, a field that has paralleled the emergence of modern molecular biology and clinical genetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5104300PMC
http://dx.doi.org/10.2147/JBM.S87955DOI Listing

Publication Analysis

Top Keywords

globin genes
16
gene regulation
16
animal models
12
models β-hemoglobinopathies
8
sickle cell
8
cell disease
8
disease β-thalassemia
8
human β-globin
8
mouse globins
8
globin gene
8

Similar Publications

Reproductive Health in Women with Major β-Thalassemia: Evaluating Ovarian Reserve and Endocrine Complications.

Metabolites

December 2024

IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece.

Thalassemia is an autosomal recessive hereditary chronic hemolytic anemia characterized by a partial or complete deficiency in the synthesis of alpha- or beta-globin chains, which are essential components of adult hemoglobin. Mutations in the globin genes lead to the production of unstable globin chains that precipitate within cells, causing hemolysis. This shortens the lifespan of mature red blood cells (RBCs) and results in the premature destruction of RBC precursors in the bone marrow.

View Article and Find Full Text PDF

Accumulation of free α-globin is a critical factor in the pathogenesis of β-thalassemia. Autophagy plays a crucial role in clearing toxic free α-globin, thereby reducing disease severity. However, the impact of natural mutations in autophagy-related genes (ATGs) on the phenotypic variability of β-thalassemia remains unclear.

View Article and Find Full Text PDF

Hemoglobin disorders are highly prevalent inherited hematological defects in Southern China. The identification of novel variants in globin genes and accurate assessment of hematological parameters play a crucial role in precise genetic counseling and clinical practice. Peripheral blood samples were collected for hematological analysis, including red blood cell and hemoglobin assessment, while serum ferritin levels were measured to detect iron depletion.

View Article and Find Full Text PDF

Accurately quantifying the functional consequences of noncoding mosaic variants requires the pairing of DNA sequences with both accessible and closed chromatin architectures along individual DNA molecules-a pairing that cannot be achieved using traditional fragmentation-based chromatin assays. We demonstrate that targeted single-molecule chromatin fiber sequencing (Fiber-seq) achieves this, permitting single-molecule, long-read genomic, and epigenomic profiling across targeted >100 kb loci with ∼10-fold enrichment over untargeted sequencing. Targeted Fiber-seq reveals that pathogenic expansions of the CTG repeat that underlie Myotonic Dystrophy 1 are characterized by somatic instability and disruption of multiple nearby regulatory elements, both of which are repeat length-dependent.

View Article and Find Full Text PDF

Characterizing the genetic architecture of drug response using gene-context interaction methods.

Cell Genom

December 2024

Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA. Electronic address:

Identifying factors that affect treatment response is a central objective of clinical research, yet the role of common genetic variation remains largely unknown. Here, we develop a framework to study the genetic architecture of response to commonly prescribed drugs in large biobanks. We quantify treatment response heritability for statins, metformin, warfarin, and methotrexate in the UK Biobank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!