Toward High Performance 2D/2D Hybrid Photocatalyst by Electrostatic Assembly of Rationally Modified Carbon Nitride on Reduced Graphene Oxide.

Sci Rep

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Published: November 2016

Efficient metal-free visible photocatalysts with high stability are highly desired for sufficient utilization of solar energy. In this work, the popular carbon nitride (CN) photocatalyst is rationally modified by acid exfoliation of molecular grafted CN, achieving improved visible-light utilization and charge carriers mobility. Moreover, the modification process tuned the surface electrical property of CN, which enabled it to be readily coupled with the oppositely charged graphene oxide during the following photo-assisted electrostatic assembly. Detailed characterizations indicate the formation of well-contacted 2D/2D heterostructure with strong interfacial interaction between the modified CN nanosheets (CNX-NSs) and reduced graphene oxide (RGO). The optimized hybrid (with a RGO ratio of 20%) exhibits the best photocatalytic performance toward MB degradation, which is almost 12.5 and 7.0 times of CN under full spectrum and visible-light irradiation, respectively. In addition, the hybrid exhibits high stability after five successive cycles with no obvious change in efficiency. Unlike pure CNX-NSs, the dye decomposition mostly depends on the HO generation by a two-electron process due to the electron reservoir property of RGO. Thus the enhancement in photocatalytic activity could be ascribed to the improved light utilization and increased charge transfer ability across the interface of CNX-NSs/RGO heterostructure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112518PMC
http://dx.doi.org/10.1038/srep37318DOI Listing

Publication Analysis

Top Keywords

graphene oxide
12
electrostatic assembly
8
rationally modified
8
carbon nitride
8
reduced graphene
8
high stability
8
high performance
4
performance 2d/2d
4
2d/2d hybrid
4
hybrid photocatalyst
4

Similar Publications

High throughput intracellular delivery of biological macromolecules is crucial for cell engineering, gene expression, therapeutics, diagnostics, and clinical studies; however, most existing techniques are either contact-based or have throughput limitations. Herein, we report a light-activated, contactless, high throughput photoporation method for highly efficient and viable cell transfection of more than a million cells within a minute. We fabricated reduced graphene oxide (rGO) nanoflakes that was mixed with a polydimethylsiloxane (PDMS) nanocomposite thin sheet with an area of 3 cm and a thickness of ∼600 μm.

View Article and Find Full Text PDF

Flexible zinc-air batteries (FZABs) present a promising solution for the next generation of power sources in wearable electronics, owing to their high energy density, cost-effectiveness, and safety. However, solid-state electrolytes for FZABs continue to face challenges related to rapid water loss and low ionic conductivity. In this study, a hydrophilic and stable tetramethylguanidine-modified graphene oxide as an additive, which is incorporated into sodium polyacrylate to develop a high-performance gel polymer electrolyte (GPE), is designed.

View Article and Find Full Text PDF

The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (I and I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues.

View Article and Find Full Text PDF

Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.

View Article and Find Full Text PDF

This study developed a novel PbS-rGO composite counter electrode to enhance the performance of quantum dot-sensitized solar cells (QDSSCs). The composite was synthesized a hydrothermal method by anchoring PbS nanocubes onto reduced graphene oxide (rGO) sheets. The effect of the mass ratio of rGO to PbS (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!