The monitoring of biopharmaceutical products using Fourier transform infrared (FT-IR) spectroscopy relies on calibration techniques involving the acquisition of spectra of bioprocess samples along the process. The most commonly used method for that purpose is partial least squares (PLS) regression, under the assumption that a linear model is valid. Despite being successful in the presence of small nonlinearities, linear methods may fail in the presence of strong nonlinearities. This paper studies the potential usefulness of nonlinear regression methods for predicting, from in situ near-infrared (NIR) and mid-infrared (MIR) spectra acquired in high-throughput mode, biomass and plasmid concentrations in Escherichia coli DH5-α cultures producing the plasmid model pVAX-LacZ. The linear methods PLS and ridge regression (RR) are compared with their kernel (nonlinear) versions, kPLS and kRR, as well as with the (also nonlinear) relevance vector machine (RVM) and Gaussian process regression (GPR). For the systems studied, RR provided better predictive performances compared to the remaining methods. Moreover, the results point to further investigation based on larger data sets whenever differences in predictive accuracy between a linear method and its kernelized version could not be found. The use of nonlinear methods, however, shall be judged regarding the additional computational cost required to tune their additional parameters, especially when the less computationally demanding linear methods herein studied are able to successfully monitor the variables under study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003702816670913 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Geomatics Engineering, Hacettepe University, 06800, Beytepe, Ankara, Türkiye.
This study presents a hybrid methodology for planning green spaces to enhance urban sustainability and livability, evaluating the impacts of climate change on cities. Cities, once accommodating a small population, have become major centers of migration and development since the eighteenth century. Rapid urban growth intensifies infrastructure, environmental, and social challenges.
View Article and Find Full Text PDFJ Biol Phys
January 2025
Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190, China.
Conventional kinesin protein is a prototypical biological molecular motor that can step processively on microtubules towards the plus end by hydrolyzing ATP molecules, performing the biological function of intracellular transports. An important characteristic of the kinesin is the load dependence of its velocity, which is usually measured by using the single molecule optical trapping method with a large-sized bead attached to the motor stalk. Puzzlingly, even for the same kinesin, some experiments showed that the velocity is nearly independent of the forward load whereas others showed that the velocity decreases evidently with the increase in the magnitude of the forward load.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Artificial Intelligence and Data Science, College of Computer Science and Engineering, University of Hail, Hail, Saudi Arabia.
In the present digital scenario, the explosion of Internet of Things (IoT) devices makes massive volumes of high-dimensional data, presenting significant data and privacy security challenges. As IoT networks enlarge, certifying sensitive data privacy while still employing data analytics authority is vital. In the period of big data, statistical learning has seen fast progressions in methodological practical and innovation applications.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
Background: This study aimed to investigate associations between sociodemographic factors and dietary intake among a diverse population of early adolescents ages 10-13 years in the United States.
Methods: We examined data from the Adolescent Brain Cognitive Development (ABCD) Study in Year 2 (2018-2020, ages 10-13 years, N = 10,280). Multivariable linear regression models were conducted to estimate the adjusted associations between sociodemographic factors (age, sex, race and ethnicity, household income, parental education) and dietary intake of various food groups, measured by the Block Kids Food Screener.
Sci Rep
January 2025
School of Mathematics and Statistics, Shaoguan University, Shaoguan, 512005, China.
Recently, deep latent variable models have made significant progress in dealing with missing data problems, benefiting from their ability to capture intricate and non-linear relationships within the data. In this work, we further investigate the potential of Variational Autoencoders (VAEs) in addressing the uncertainty associated with missing data via a multiple importance sampling strategy. We propose a Missing data Multiple Importance Sampling Variational Auto-Encoder (MMISVAE) method to effectively model incomplete data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!