Unlabelled: Human motor behavior is highly goal directed, requiring the central nervous system to coordinate different aspects of motion generation to achieve the motion goals. The concept of motor synergies provides an approach to quantify the covariation of joint motions and of muscle activations, i.e., elemental variables, during a task. To analyze goal-directed movements, factorization methods can be used to reduce the high dimensionality of these variables while accounting for much of the variance in large data sets. Three factorization methods considered in this paper are principal component analysis (PCA), nonnegative matrix factorization (NNMF), and independent component analysis (ICA). Bilateral human reaching data sets are used to compare the methods, and advantages of each are presented and discussed. PCA and NNMF had a comparable performance on both EMG and joint motion data and both outperformed ICA. However, NNMF's nonnegativity condition for activation of basis vectors is a useful attribute in identifying physiologically meaningful synergies, making it a more appealing method for future studies. A simulated data set is introduced to clarify the approaches and interpretation of the synergy structures returned by the three factorization methods.

New & Noteworthy: Literature on comparing factorization methods in identifying motor synergies using numerically generated, simulation, and muscle activation data from animal studies already exists. We present an empirical evaluation of the performance of three of these methods on muscle activation and joint angles data from human reaching motion: principal component analysis, nonnegative matrix factorization, and independent component analysis. Using numerical simulation, we also studied the meaning and differences in the synergy structures returned by each method. The results can be used to unify approaches in identifying and interpreting motor synergies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225954PMC
http://dx.doi.org/10.1152/jn.00435.2016DOI Listing

Publication Analysis

Top Keywords

factorization methods
16
component analysis
16
matrix factorization
12
motor synergies
12
data sets
8
three factorization
8
principal component
8
nonnegative matrix
8
independent component
8
human reaching
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!