The tests for diagnosing latent tuberculosis infection (LTBI) are limited by a poor predictive value for identifying people at the highest risk for progressing to active tuberculosis (TB) and have various sensitivities and specificities in different populations. Identifying a more robust signature for LTBI is important for TB prevention and elimination. A pilot study was conducted with samples from immigrants to the United States that were screened for LTBI by the three commercially approved tests, namely, the tuberculin skin test (TST), the Quantiferon-TB Gold in-tube (QFT-GIT), and the T-SPOT.TB (T-SPOT). QFT-GIT supernatants from 13 people with concordant positive results and 26 people with concordant negative results were analyzed via the highly multiplexed SOMAscan proteomic assay. The proteins in the stimulated supernatants that distinguished LTBI from controls included interleukin-2 (IL-2), monocyte chemotactic protein 2 (MCP-2), interferon gamma inducible protein-10 (IP-10), interferon gamma (IFN-γ), tumor necrosis factor superfamily member 14 (TNFSF14, also known as LIGHT), monokine induced by gamma interferon (MIG), and granzyme B (P <0.00001). In addition, antigen stimulation increased the expression of heparin-binding EGF-like growth factor (HB-EGF) and activin AB in LTBI samples. In nil tubes, LIGHT was the most significant marker (P <0.0001) and was elevated in LTBI subjects. Other prominent markers in nonstimulated QFT-GIT supernatants were the complement-3 components C3b, iC3b, and C3d, which were upregulated in LTBI and markedly decreased upon stimulation. We found known and novel proteins that warrant further studies for developing improved tests for LTBI, for predicting progression to active disease, and for discriminating LTBI from active TB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5277508 | PMC |
http://dx.doi.org/10.1128/JCM.01646-16 | DOI Listing |
J Colloid Interface Sci
December 2024
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China.
CRISPR-Cas-based technology, emerging as a leading platform for molecular assays, has been extensively researched and applied in bioanalysis. However, achieving simultaneous and highly sensitive detection of multiple nucleic acid targets remains a significant challenge for most current CRISPR-Cas systems. Herein, a CRISPR Cas12a based calibratable single particle counting-mediated biosensor was constructed for dual RNAs logic and ultra-sensitive detection in one tube based on DNA Tetrahedron (DTN)-interface supported fluorescent particle probes coupled with a novel synergistic cascaded strategy between CRISPR Cas13a system and strand displacement amplification (SDA).
View Article and Find Full Text PDFMikrochim Acta
December 2024
Department of Pharmaceutics, SCSSS's Sitabai, Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India.
Cancer is a major cause of death globally, and early detection is a key to improving outcomes. Traditional diagnostic methods have limitations such as being invasive and lacking sensitivity. Immunosensors, which detect cancer biomarkers using antibodies, offer a solution with high sensitivity and selectivity.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
Warfarin is the most widely used oral anticoagulant in clinical practice. The cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex 1 (VKORC1), and cytochrome P450 4F2 (CYP4F2) genotypes are associated with warfarin dose requirements in China. Accurate genotyping is vital for obtaining reliable genotype-guided warfarin dosing information.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.
View Article and Find Full Text PDFMycoses
January 2025
Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.
Background: Emerging terbinafine resistance in Trichophyton species has been reported globally. The prevalence in clinical samples from patients with treatment failure is unknown in Denmark.
Objectives: Prospective study of terbinafine resistance in Trichophyton isolates from patients with recalcitrant skin or nail infections.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!