Although radiotherapy (RT) is widely used to control tumor growth across many cancer types, there is a relatively high incidence of RT failure exhibited by tumor recurrence, therefore a clear need exists to achieve improved effectiveness of RT. The RT-elicited immune response largely impacts the efficacy of RT and includes immune cells that kill tumor cells, but also immunosuppressive cells, which dampen anti-tumor immunity. Using murine models in which syngeneic tumor cell lines (Colon38, Glioma261, Line1) are grown intramuscularly and treated with 15 Gy local RT, we assessed the effects of RT on both the systemic and intratumoral immune response. Here we demonstrate that RT stimulates increased production of two chemokines, CCL2 and CCL5, at the tumor site. Further, that this leads to increased CCR2+ CCR5+ monocytes in circulation and subsequently alters the intratumoral immune infiltrate favoring the largely immunosuppressive CCR2+ CCR5+ monocytes. Importantly, a CCR2/CCR5 antagonist administered daily (15 mg/kg subcutaneously) starting two days prior to RT reduces both circulating and intratumoral monocytes resulting in increased efficacy of RT in radioresponsive tumors. Overall, these data have important implications for the mechanism of RT and present a means to improve RT efficacy across many cancer types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349932PMC
http://dx.doi.org/10.18632/oncotarget.13287DOI Listing

Publication Analysis

Top Keywords

cancer types
8
immune response
8
intratumoral immune
8
ccr2+ ccr5+
8
ccr5+ monocytes
8
tumor
5
increasing efficacy
4
efficacy radiotherapy
4
radiotherapy modulating
4
modulating ccr2/ccr5
4

Similar Publications

Colorectal cancer (CRC) is among the most common cancer types for both sexes. Tripartite motif 36 (TRIM36) has been reported to be aberrantly expressed in several cancer types, suggesting its involvement in cancer progression. However, the role of TRIM36 in the colorectal carcinogenesis remain unknown.

View Article and Find Full Text PDF

No established method currently exists for evaluating tumor-infiltrating lymphocytes (TILs) in gastric cancer (GC), and their clinical significance based on infiltration site in GC remains unclear. In this study, we developed a method to evaluate TILs according to their infiltration site as a prognostic marker for GC. We retrospectively analyzed 103 patients with advanced GC who underwent curative resection.

View Article and Find Full Text PDF

The Golgi apparatus is a critical organelle responsible for intracellular trafficking and signaling, orchestrating essential processes such as protein and lipid sorting . Dysregulation of its function has been implicated in various pathologies, including obesity, diabetes, and cancer, highlighting its importance as a potential therapeutic target. Despite this, the development of tools to selectively target the Golgi in specific cell types remain a significant unmet challenge in imaging and drug discovery.

View Article and Find Full Text PDF

Uncovering mechanisms and predicting tumor cell responses to CAR-NK cytotoxicity is essential for improving therapeutic efficacy. Currently, the complexity of these effector-target interactions and the donor-to-donor variations in NK cell receptor (NKR) repertoire require functional assays to be performed experimentally for each manufactured CAR-NK cell product and target combination. Here, we developed a computational mechanistic multiscale model which considers heterogenous expression of CARs, NKRs, adhesion receptors and their cognate ligands, signal transduction, and NK cell-target cell population kinetics.

View Article and Find Full Text PDF

Cancer cells within tumors exhibit a wide range of phenotypic states driven by non-genetic mechanisms in addition to extensively studied genetic alterations. Conversions among cancer cell states can result in intratumoral heterogeneity which contributes to metastasis and development of drug resistance. However, mechanisms underlying the initiation and/or maintenance of such phenotypic plasticity are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!