Learning how to gain rewards (approach learning) and avoid punishments (avoidance learning) is fundamental for everyday life. While individual differences in approach and avoidance learning styles have been related to genetics and aging, the contribution of personality factors, such as traits, remains undetermined. Moreover, little is known about the computational mechanisms mediating differences in learning styles. Here, we used a probabilistic selection task with positive and negative feedbacks, in combination with computational modelling, to show that individuals displaying better approach (vs. avoidance) learning scored higher on measures of approach (vs. avoidance) trait motivation, but, paradoxically, also displayed reduced learning speed following positive (vs. negative) outcomes. These data suggest that learning different types of information depend on associated reward values and internal motivational drives, possibly determined by personality traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113060PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166675PLOS

Publication Analysis

Top Keywords

learning styles
12
avoidance learning
12
approach avoidance
12
learning
10
positive negative
8
linking individual
4
individual learning
4
styles approach-avoidance
4
approach-avoidance motivational
4
motivational traits
4

Similar Publications

In recent years, the growing number of vehicles on the road have exacerbated issues related to safety and traffic congestion. However, the advent of the Internet of Vehicles (IoV) holds the potential to transform mobility, enhance traffic management and safety, and create smarter, more interconnected road networks. This paper addresses key road safety concerns, focusing on driver condition detection, vehicle monitoring, and traffic and road management.

View Article and Find Full Text PDF

The association of lifestyle with cardiovascular and all-cause mortality based on machine learning: a prospective study from the NHANES.

BMC Public Health

January 2025

Department of Health Management of Public Health, College of Public Health, Zhengzhou University, 100 Kexue Road, Gaoxin district, Zhengzhou, 450001, Henan, China.

Background: Lifestyle and cardiovascular mortality and all-cause mortality have been exhaustively explored by traditional methods, but the advantages of machine learning (ML) over traditional methods may lead to different or more precise conclusions. The aim of this study was to evaluate the effectiveness of machine learning-based lifestyle factors in predicting cardiovascular and all-cause mortality and compare the results obtained by traditional methods.

Method: A prospective cohort study was conducted using a nationally representative sample of adults aged 40 years or older, drawn from the US National Health and Nutrition Examination Survey from 2007 to 2010.

View Article and Find Full Text PDF

Ethical management is key to ensuring organizational sustainability, through resources such as autonomy or self-efficacy. However, economic and social uncertainty occasionally leads to adaptive responses that prioritize profit as the primary interest, blurring the integrating role of ethical leadership. There are a number of studies that support this reality in a virtual work environment.

View Article and Find Full Text PDF

There is growing interest in neuroscience-informed education, as well as neuroscience-derived strategies that maximise learning. Studies on neuroscience literacy and neuromyths, i.e.

View Article and Find Full Text PDF

Introduction: Potatoes and tomatoes are important Solanaceae crops that require effective disease monitoring for optimal agricultural production. Traditional disease monitoring methods rely on manual visual inspection, which is inefficient and prone to subjective bias. The application of deep learning in image recognition has led to object detection models such as YOLO (You Only Look Once), which have shown high efficiency in disease identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!