The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature20148 | DOI Listing |
Nat Astron
April 2024
Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland.
Pluto's surface is dominated by the huge, pear-shaped basin Sputnik Planitia. It appears to be of impact origin, but modelling has not yet explained its peculiar geometry. We propose an impact mechanism that reproduces its topographic shape while also explaining its alignment near the Pluto-Charon axis.
View Article and Find Full Text PDFNature
December 2021
Laboratoire de Planétologie et Géodynamique, UMR 6112, Nantes Université, CNRS, Université d'Angers, Nantes, France.
Sputnik Planitia is a nitrogen-ice-filled basin on Pluto. Its polygonal surface patterns have been previously explained as a result of solid-state convection with either an imposed heat flow or a temperature difference within the 10-km-thick ice layer. Neither explanation is satisfactory, because they do not exhibit surface topography with the observed pattern: flat polygons delimited by narrow troughs.
View Article and Find Full Text PDFNature
November 2016
SWRI, Boulder, Colorado, USA.
Pluto's Sputnik Planitia is a bright, roughly circular feature that resembles a polar ice cap. It is approximately 1,000 kilometres across and is centred on a latitude of 25 degrees north and a longitude of 175 degrees, almost directly opposite the side of Pluto that always faces Charon as a result of tidal locking. One explanation for its location includes the formation of a basin in a giant impact, with subsequent upwelling of a dense interior ocean.
View Article and Find Full Text PDFNature
December 2016
National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, California 94035, USA.
The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition.
View Article and Find Full Text PDFNature
December 2016
Purdue University, Department of Earth, Atmospheric, and Planetary Sciences, West Lafayette, Indiana 47907, USA.
Pluto is an astoundingly diverse, geologically dynamic world. The dominant feature is Sputnik Planitia-a tear-drop-shaped topographic depression approximately 1,000 kilometres in diameter possibly representing an ancient impact basin. The interior of Sputnik Planitia is characterized by a smooth, craterless plain three to four kilometres beneath the surrounding rugged uplands, and represents the surface of a massive unit of actively convecting volatile ices (N, CH and CO) several kilometres thick.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!