Notch1 controls development of the extravillous trophoblast lineage in the human placenta.

Proc Natl Acad Sci U S A

Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, 1090 Vienna, Austria;

Published: November 2016

Development of the human placenta and its different epithelial trophoblasts is crucial for a successful pregnancy. Besides fusing into a multinuclear syncytium, the exchange surface between mother and fetus, progenitors develop into extravillous trophoblasts invading the maternal uterus and its spiral arteries. Migration into these vessels promotes remodelling and, as a consequence, adaption of blood flow to the fetal-placental unit. Defects in remodelling and trophoblast differentiation are associated with severe gestational diseases, such as preeclampsia. However, mechanisms controlling human trophoblast development are largely unknown. Herein, we show that Notch1 is one such critical regulator, programming primary trophoblasts into progenitors of the invasive differentiation pathway. At the 12th wk of gestation, Notch1 is exclusively detected in precursors of the extravillous trophoblast lineage, forming cell columns anchored to the uterine stroma. At the 6th wk, Notch1 is additionally expressed in clusters of villous trophoblasts underlying the syncytium, suggesting that the receptor initiates the invasive differentiation program in distal regions of the developing placental epithelium. Manipulation of Notch1 in primary trophoblast models demonstrated that the receptor promotes proliferation and survival of extravillous trophoblast progenitors. Notch1 intracellular domain induced genes associated with stemness of cell columns, myc and VE-cadherin, in Notch1 fusogenic precursors, and bound to the myc promoter and enhancer region at RBPJκ cognate sequences. In contrast, Notch1 repressed syncytialization and expression of TEAD4 and p63, two regulators controlling self-renewal of villous cytotrophoblasts. Our results revealed Notch1 as a key factor promoting development of progenitors of the extravillous trophoblast lineage in the human placenta.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137701PMC
http://dx.doi.org/10.1073/pnas.1612335113DOI Listing

Publication Analysis

Top Keywords

extravillous trophoblast
16
trophoblast lineage
12
human placenta
12
notch1
9
lineage human
8
invasive differentiation
8
cell columns
8
trophoblast
7
extravillous
5
notch1 controls
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!