A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Overexpression of Soluble Fas Ligand following Adeno-Associated Virus Gene Therapy Prevents Retinal Ganglion Cell Death in Chronic and Acute Murine Models of Glaucoma. | LitMetric

Glaucoma is a multifactorial disease resulting in the death of retinal ganglion cells (RGCs) and irreversible blindness. Glaucoma-associated RGC death depends on the proapoptotic and proinflammatory activity of membrane-bound Fas ligand (mFasL). In contrast to mFasL, the natural cleavage product, soluble Fas ligand (sFasL) inhibits mFasL-mediated apoptosis and inflammation and, therefore, is an mFasL antagonist. DBA/2J mice spontaneously develop glaucoma and, predictably, RGC destruction is exacerbated by expression of a mutated membrane-only FasL gene that lacks the extracellular cleavage site. Remarkably, one-time intraocular adeno-associated virus-mediated gene delivery of sFasL provides complete and sustained neuroprotection in the chronic DBA/2J and acute microbead-induced models of glaucoma, even in the presence of elevated intraocular pressure. This protection correlated with inhibition of glial activation, reduced production of TNF-α, and decreased apoptosis of RGCs and loss of axons. These data indicate that cleavage of FasL under homeostatic conditions, and the ensuing release of sFasL, normally limits the neurodestructive activity of FasL. The data further support the notion that sFasL, and not mFasL, contributes to the immune-privileged status of the eye.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5136323PMC
http://dx.doi.org/10.4049/jimmunol.1601488DOI Listing

Publication Analysis

Top Keywords

fas ligand
12
soluble fas
8
retinal ganglion
8
models glaucoma
8
overexpression soluble
4
ligand adeno-associated
4
adeno-associated virus
4
virus gene
4
gene therapy
4
therapy prevents
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!