Protein phosphatase 2A (PP2A) activity can be enhanced pharmacologically by PP2A-activating drugs (PADs). The sphingosine analog FTY720 is the best known PAD and we have shown that FTY720 represses production of pro-inflammatory cytokines responsible for respiratory disease pathogenesis. Whether its phosphorylated form, FTY720-P, also enhances PP2A activity independently of the sphingosine 1-phosphate (S1P) pathway was unknown. Herein, we show that FTY720-P enhances TNF-induced PP2A phosphatase activity and significantly represses TNF-induced interleukin 6 (IL-6) and IL-8 mRNA expression and protein secretion from A549 lung epithelial cells. Comparing FTY720 and FTY720-P with S1P, we show that unlike S1P, the sphingosine analogs do not induce cytokine production on their own. In fact, FTY720 and FTY720-P significantly repress S1P-induced IL-6 and IL-8 production. We then examined their impact on expression of cyclooxygenase 2 (COX-2) and resultant prostaglandin E (PGE production. S1P did not increase production of this pro-inflammatory enzyme because COX-2 mRNA gene expression is NF-κB-dependent, and unlike TNF, S1P did not activate NF-κB. However, TNF-induced COX-2 mRNA expression and PGE secretion is repressed by FTY720 and FTY720-P. Hence, FTY720-P enhances PP2A activity and that PADs can repress production of pro-inflammatory cytokines and enzymes in A549 lung epithelial cells in a manner devoid of S1P agonism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110966PMC
http://dx.doi.org/10.1038/srep37297DOI Listing

Publication Analysis

Top Keywords

a549 lung
12
lung epithelial
12
epithelial cells
12
pp2a activity
12
production pro-inflammatory
12
fty720-p enhances
12
fty720 fty720-p
12
phosphorylated form
8
devoid s1p
8
s1p agonism
8

Similar Publications

Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.

View Article and Find Full Text PDF

The X-Linked Tumor Suppressor TSPX Regulates Genes Involved in the EGFR Signaling Pathway and Cell Viability to Suppress Lung Adenocarcinoma.

Genes (Basel)

January 2025

Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and the Institute for Human Genetics, University of California, San Francisco, CA 94121, USA.

TSPX is an X-linked tumor suppressor that was initially identified in non-small cell lung cancer (NSCLC) cell lines. However, its expression patterns and downstream mechanisms in NSCLC remain unclear. This study aims to investigate the functions of TSPX in NSCLC by identifying its potential downstream targets and their correlation with clinical outcomes.

View Article and Find Full Text PDF

Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.

View Article and Find Full Text PDF

Iron oxide-based nanoparticles are promising materials for cancer thermal therapy and immunotherapy. However, several proofs of concept reported data with murine tumor models that might have limitations for clinical translation. Magnetite is nowadays the most popular nanomaterial, but doping with distinct ions can enhance thermal therapy, namely, magnetic nanoparticle hyperthermia (MNH) and photothermal therapy (PTT).

View Article and Find Full Text PDF

There is increased interest in developing non-animal test systems for inhalation exposure safety assessments. However, defined methodologies are absent for predicting local respiratory effects from inhalation exposure to irritants. The current study introduces a concept for applying in vitro and in silico methods for inhalation exposure safety assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!