Addiction to nicotine and the inability to quit smoking are influenced by genetic factors, emphasizing the importance of understanding how genes and drugs of abuse mechanistically impact each other. One well-characterized protein responsible for regulating both response to drugs and gene expression is the transcription factor CREB (cAMP-responsive element binding protein). Previous work indicates that hippocampal-specific alterations in CREB signaling and synaptic plasticity may underlie certain nicotine withdrawal phenotypes. However, the structure of the hippocampus possesses dorsal and ventral subregions, each differing in behavioral, anatomic and gene expression characteristics. This study examines the effects of CREB deletion specifically in the ventral or dorsal hippocampus of animals chronically treated with saline, nicotine, or undergoing 24 h withdrawal. After region-specific viral injections of AAV-GFP or AAV-CRE in CREB animals, behavioral testing measured anxiety levels, using the Novelty-Induced Hypophagia test, and cognition, using a contextual fear conditioning paradigm. Deletion of CREB in the ventral, but not dorsal, hippocampus resulted in amelioration of nicotine withdrawal-induced anxiety-like behavior in the Novelty-Induced Hypophagia test. In contrast, CREB deletion in the dorsal hippocampus resulted in learning and memory deficits in fear conditioning, whereas CREB deletion in the ventral hippocampus showed an enhancement in learning. Gene expression analysis showed differential treatment- and region-dependent alterations of several CREB target genes that are well-known markers of neuroplasticity within the hippocampus. Collectively, these data provide persuasive evidence towards the distinct roles of CREB within the dorsal and ventral hippocampus separately in mediating select nicotine withdrawal phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518892 | PMC |
http://dx.doi.org/10.1038/npp.2016.257 | DOI Listing |
Prog Neurobiol
January 2025
Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile; Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile. Electronic address:
Ketamine administration during adolescence affects cognitive performance; however, its long-term impact on synaptic function and neuronal integration in the hippocampus a brain region critical for cognition remains unclear. Using functional and molecular analyses, we found that chronic ketamine administration during adolescence exerts long-term effects on synaptic integration, expanding the temporal window in an input-specific manner affecting the inner molecular layer but not the medial perforant path inputs in the adult mouse dorsal hippocampal dentate gyrus. Ketamine also alters the excitatory/inhibitory balance by reducing the efficacy of inhibitory inputs likely due to a reduction in parvalbumin-positive interneurons number and function.
View Article and Find Full Text PDFNeuropsychologia
January 2025
Neuroscience Area, SISSA, Trieste, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma-Tor Vergata, Roma, Italy.
Although gesture observation tasks are believed to invariably activate the action-observation network (AON), we investigated whether the activation of different cognitive mechanisms when processing identical stimuli with different explicit instructions modulates AON activations. Accordingly, 24 healthy right-handed individuals observed gestures and they processed both the actor's moved hand (hand laterality judgment task, HT) and the meaning of the actor's gesture (meaning task, MT). The main brain-level result was that the HT (vs MT) differentially activated the left and right precuneus, the left inferior parietal lobe, the left and right superior parietal lobe, the middle frontal gyri bilaterally and the left precentral gyrus.
View Article and Find Full Text PDFElife
January 2025
Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE).
View Article and Find Full Text PDFNature
January 2025
Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
Numerous studies support the role of dopamine in modulating aggression, but the exact neural mechanisms remain elusive. Here we show that dopaminergic cells in the ventral tegmental area (VTA) can bidirectionally modulate aggression in male mice in an experience-dependent manner. Although VTA dopaminergic cells strongly influence aggression in novice aggressors, they become ineffective in expert aggressors.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Tlaxcala, Mexico. Electronic address:
Hypertension, if untreated, can disrupt the blood-brain-barrier (BBB) and reduce cerebral flow in the central nervous system (CNS) inducing hippocampal atrophy, potentially leading to cognitive deficits and vascular dementia. Spontaneous hypertensive rats (SHR) demonstrated neuroplastic alterations in the hippocampus, hyperlocomotion and memory deficits in males. Cerebrolysin (CBL), a neuropeptide preparation, induces synaptic and neuronal plasticity in various populations of neurons and repairs the integrity of the BBB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!