Metal-ligand interactions give rise to a wide variety of metal complexes with various physical properties and chemical behaviours and numerous practical applications. The ability of the zinc ion to enhance the structural stability of many proteins by electrostatic interactions or by co-ordination with surrounding amino acids makes it the most important metal ion found in biological systems. In this paper, we highlight the importance of non-covalent interaction established between a metal ion and its environment in stabilizing biomolecules. Specifically, we are interested in understanding the stabilization role of the zinc ion in a native and point-mutated zinc-activated site. We have adapted a new quantum mechanics/molecular mechanics (QM/MM) strategy to describe a large molecular system; it is referred to as the local self-consistent field/MM method. It involves the use of frozen doubly occupied strictly localized bonding orbitals to link the QM subsystem to the one treated at the MM level. The B3LYP method, combined with LanL2DZ and 6-311G basis sets, was used to describe the QM region that comprised the zinc ion and the lateral chains of the four co-ordinating amino acids. For the surroundings (the backbone), CHARMM27 force field was used to describe MM interactions. The influence of the basis set size on the quality of the structural parameters of the zinc-binding site and the effects of mutation on the structural stabilization energy are analysed and reported.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00775-016-1411-6DOI Listing

Publication Analysis

Top Keywords

zinc ion
12
stabilization energy
8
local self-consistent
8
amino acids
8
metal ion
8
ion
5
mutation stabilization
4
energy hiv-1
4
zinc
4
hiv-1 zinc
4

Similar Publications

Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells.

View Article and Find Full Text PDF

Metallic vanadium is innovatively introduced for a superior aqueous zinc-ion battery cathode material, which is activated through dissolution-deposition transition to amorphous VO·3HO and delivers an excellent capacity of 610 mA h g at 0.1 A g and remarkable capacity retention rate of 80.3% after 1000 cycles at 1 A g.

View Article and Find Full Text PDF

Cu-doped waste-tire carbon as catalyst for UV/HO oxidation of ofloxacin.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:

Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.

View Article and Find Full Text PDF

Dual-mode luminescence and colorimetric sensing for Al and Fe/Fe ions in water using a zinc coordination polymer.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand. Electronic address:

A zinc(II) coordination polymer, [Zn(Hdhtp)(2,2'-bpy)(HO)] (1), has been utilized as a dual-mode luminescence-colorimetric sensor (Hdhtp = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in Hdhtp can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence.

View Article and Find Full Text PDF

Microwave synthesis of molybdenum disulfide quantum dots and the application in bilirubin sensing.

Methods Appl Fluoresc

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.

Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!