Nitrate water pollution, which is mainly caused by agricultural activities, remains an international problem. It can cause serious long-term environmental and human health issues due to nitrate time-lag in the groundwater system. However, the nitrate subsurface legacy issue has rarely been considered in environmental water management. We have developed a simple catchment-scale approach to investigate the impact of historical nitrate loading from agricultural land on the nitrate-concentration trends in sandstones, which represent major aquifers in the Eden Valley, UK. The model developed considers the spatio-temporal nitrate loading, low permeability superficial deposits, dual-porosity unsaturated zones, and nitrate dilution in aquifers. Monte Carlo simulations were undertaken to analyse parameter sensitivity and calibrate the model using observed datasets. Time series of annual average nitrate concentrations from 1925 to 2150 were generated for four aquifer zones in the study area. The results show that the nitrate concentrations in 'St Bees Sandstones', 'silicified Penrith Sandstones', and 'non-silicified Penrith Sandstones' keep rising or stay high before declining to stable levels, whilst that in 'interbedded Brockram Penrith Sandstones' will level off after a slight decrease. This study can help policymakers better understand local nitrate-legacy issues. It also provides a framework for informing the long-term impact and timescale of different scenarios introduced to deliver water-quality compliance. This model requires relatively modest parameterisation and is readily transferable to other areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.10.235DOI Listing

Publication Analysis

Top Keywords

nitrate loading
12
penrith sandstones'
12
nitrate
9
impact historical
8
historical nitrate
8
loading agricultural
8
agricultural land
8
land nitrate-concentration
8
nitrate-concentration trends
8
aquifers eden
8

Similar Publications

Groundwater nitrate response to hydrogeological conditions and socioeconomic load in an agriculture dominated area.

Sci Rep

January 2025

School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China.

Nitrate pollution is widespread environmental concern in most shallow groundwater systems. This study conducts a comprehensive investigation of shallow groundwater, deep groundwater, and surface water in a region of the Chinese Loess Plateau. Nitrate pollution in this area is severe with more than half of the shallow groundwater samples exceeding the limit of nitrate for drinking water (50 mg/L).

View Article and Find Full Text PDF

Wound dressing development is an area of active research. Traditional dressings lack antibacterial activity, biocompatibility, and tissue regeneration. Alginate is a heavily investigated polymer employed as wound dressings and can be combined with a wide range of additives.

View Article and Find Full Text PDF

Investigation of the Photocatalytic Activity of Copper-Modified Commercial Titania (P25) in the Process of Carbon Dioxide Photoreduction.

Materials (Basel)

December 2024

Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland.

The photocatalytic reduction of CO to useful products is an area of active research because it shows a potential to be an efficient tool for mitigating climate change. This work investigated the modification of titania with copper(II) nitrate and its impact on improving the CO reduction efficiency in a gas-phase batch photoreactor under UV-Vis irradiation. The investigated photocatalysts were prepared by treating P25-copper(II) nitrate suspensions (with various Cu concentrations), alkalized with ammonia water, in a microwave-assisted solvothermal reactor.

View Article and Find Full Text PDF

Nitrogen contamination of water sources poses significant environmental and health risks. The sulfur-driven simultaneous nitrification and autotrophic denitrification (SNAD) process offers a cost-effective solution, as it operates in a single reactor, requires no organic carbon addition, and produces minimal sludge. However, this process remains underexplored, with microbial population dynamics, their interactions, and their implications for process efficiency not yet fully understood.

View Article and Find Full Text PDF

Investigation and modeling of land use effects on water quality in two NYC water supply streams.

J Environ Manage

January 2025

71 Smith Ave., Bureau of Water Supply, New York City Department of Environmental Protection, Kingston, NY, 12401, USA.

The paired watershed monitoring approach is widely used to investigate hydrologic processes and water quality, providing streamflow and water quality records for long-term trend analysis, as well as data for developing and testing hydrologic models. In this study we use 20 years of streamflow and water quality data, along with a watershed model, to examine sources of stream nutrients and their changes over time in two small streams within the New York City water supply system. We compare sources and trends in stream nitrate and dissolved phosphorus in the urbanized Amawalk watershed with those of the predominantly forested Boyd Corners watershed in the Croton system of reservoirs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!