Enhancement of the T cell-stimulating ability of Mycobacterium bovis BCG (BCG) is necessary to develop an effective tuberculosis vaccine. For this purpose, we introduced the PEST-HSP70-major membrane protein-II (MMPII)-PEST fusion gene into ureC-gene depleted recombinant (r) BCG to produce BCG-PEST. The PEST sequence is involved in the proteasomal processing of antigens. BCG-PEST secreted the PEST-HSP70-MMPII-PEST fusion protein and more efficiently activated human monocyte-derived dendritic cells (DCs) in terms of phenotypic changes and cytokine productions than an empty-vector-introduced BCG or HSP70-MMPII gene-introduced ureC gene-depleted BCG (BCG-DHTM). Autologous human naïve CD8 T cells and naïve CD4 T cells were effectively activated by BCG-PEST and produced IFN-γ in an antigen-specific manner through DCs. These T cell activations were closely associated with phagosomal maturation and intraproteasomal protein degradation in antigen-presenting cells. Furthermore, BCG-PEST produced long-lasting memory-type T cells in C57BL/6 mice more efficiently than control rBCGs. Moreover, a single subcutaneous injection of BCG-PEST more effectively reduced the multiplication of subsequent aerosol-challenged Mycobacterium tuberculosis of the standard H37Rv strain and clinically isolated Beijing strain in the lungs than control rBCGs. The vaccination effect of BCG-PEST lasted for at least 6months. These results indicate that BCG-PEST may be able to efficiently control the spread of tuberculosis in human.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2016.10.069DOI Listing

Publication Analysis

Top Keywords

membrane protein-ii
8
pest sequence
8
bcg-pest produced
8
efficiently control
8
control rbcgs
8
bcg-pest
7
bcg
6
cells
5
enhanced protective
4
protective efficacy
4

Similar Publications

Aim: To identify the physiological role of the acid-base sensing enzyme, soluble adenylyl cyclase (sAC), in red blood cells (RBC) of the model teleost fish, rainbow trout.

Methods: We used: (i) super-resolution microscopy to determine the subcellular location of sAC protein; (ii) live-cell imaging of RBC intracellular pH (pH) with specific sAC inhibition (KH7 or LRE1) to determine its role in cellular acid-base regulation; (iii) spectrophotometric measurements of haemoglobin-oxygen (Hb-O) binding in steady-state conditions; and (iv) during simulated arterial-venous transit, to determine the role of sAC in systemic O transport.

Results: Distinct pools of sAC protein were detected in the RBC cytoplasm, at the plasma membrane and within the nucleus.

View Article and Find Full Text PDF

Recent Advances in the Inhibition of Membrane Lipid Peroxidation by Food-Borne Plant Polyphenols via the Nrf2/GPx4 Pathway.

J Agric Food Chem

June 2024

Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China.

Lipid peroxidation (LP) leads to changes in the fluidity and permeability of cell membranes, affecting normal cellular function and potentially triggering apoptosis or necrosis. This process is closely correlated with the onset of many diseases. Evidence suggests that the phenolic hydroxyl groups in food-borne plant polyphenols (FPPs) make them effective antioxidants capable of preventing diseases triggered by cell membrane LP.

View Article and Find Full Text PDF

Exosomes derived from vMIP-II-Lamp2b gene-modified M2 cells provide neuroprotection by targeting the injured spinal cord, inhibiting chemokine signals and modulating microglia/macrophage polarization in mice.

Exp Neurol

July 2024

Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China. Electronic address:

Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects.

View Article and Find Full Text PDF

M-MDSCs mediated trans-BBB drug delivery for suppression of glioblastoma recurrence post-standard treatment.

J Control Release

May 2024

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China. Electronic address:

We found that immunosuppressive monocytic-myeloid-derived suppressor cells (M-MDSCs) were more likely to be recruited by glioblastoma (GBM) through adhesion molecules on GBM-associated endothelial cells upregulated post-chemoradiotherapy. These cells are continuously generated during tumor progression, entering tumors and expressing PD-L1 at a high level, allowing GBM to exhaust T cells and evade attack from the immune system, thereby facilitating GBM relapse. αLy-6C-LAMP is composed of (i) drug cores with slightly negative charges condensed by cationic protamine and plasmids encoding PD-L1 trap protein, (ii) pre-formulated cationic liposomes targeted to Ly-6C for encapsulating the drug cores, and (iii) a layer of red blood cell membrane on the surface for effectuating long-circulation.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is worldwide health problem associated with high morbidity and mortality. From both the patient and socioeconomic perspectives, prevention of progression of premalignant oral intraepithelial neoplasia (OIN) to OSCC is clearly the preferable outcome. Optimal OSCC chemopreventives possess a variety of attributes including high tolerability, bioavailability, efficacy and preservation of an intact surface epithelium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!