Nanosized materials acting as substitutes of natural enzymes are currently attracting significant research due to their stable enzyme-like characteristics, but some flaws of these nanozymes, including their limited catalytic rate and efficiency, need to be remedied to enable their wider applications. In this work, we verify for the first time the catalytic behavior of uncapped nanobranch-based CuS clews as a peroxidase mimic. XRD, XPS, SEM, and TEM proofs demonstrate that high-purity CuS clews composed of intertwined wires with abundant nanodendrites outside are successfully produced via a facile one-pot hydrothermal synthesis approach, with thiourea as both the sulfion source and the structure-directing agent. The synthesized CuS can catalytically oxidize 3,3',5,5'-tetramethylbenzidine (TMB) by HO to trigger a visible color reaction with rapid response (reaching a maximum change within 5 min). The proposed CuS nanozyme exhibits preferable catalytic kinetics over natural horseradish peroxidase (HRP). This outstanding activity primarily results from the large surface area and rich sites exposed by the uncapped unique structure. Under optimized conditions, the fabricated sensing system provides linear absorbance (652 nm) changes in the HO concentration range of 0.2˜130 μM, with a detection limit of as low as 63 nM. When coupled with glucose oxidase (GOD), the system is demonstrated to be capable of monitoring glucose in blood samples with excellent performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2016.10.013 | DOI Listing |
Anal Chim Acta
December 2016
Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China. Electronic address:
Nanosized materials acting as substitutes of natural enzymes are currently attracting significant research due to their stable enzyme-like characteristics, but some flaws of these nanozymes, including their limited catalytic rate and efficiency, need to be remedied to enable their wider applications. In this work, we verify for the first time the catalytic behavior of uncapped nanobranch-based CuS clews as a peroxidase mimic. XRD, XPS, SEM, and TEM proofs demonstrate that high-purity CuS clews composed of intertwined wires with abundant nanodendrites outside are successfully produced via a facile one-pot hydrothermal synthesis approach, with thiourea as both the sulfion source and the structure-directing agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!