Objectives: It has long been discussed whether fitness or fatness is a more important determinant of health status. If the same genetic factors that promote body fat percentage (body fat%) are related to cardiorespiratory fitness (CRF), part of the concurrent associations with health outcomes could reflect a common genetic origin. In this study we aimed to 1) examine genetic correlations between body fat% and CRF; 2) determine whether CRF can be attributed to a genetic risk score (GRS) based on known body fat% increasing loci; and 3) examine whether the fat mass and obesity associated (FTO) locus associates with CRF.

Methods: Genetic correlations based on pedigree information were examined in a family based cohort (n = 230 from 55 families). For the genetic association analyses, we examined two Danish population-based cohorts (ntotal = 3206). The body fat% GRS was created by summing the alleles of twelve independent risk variants known to associate with body fat%. We assessed CRF as maximal oxygen uptake expressed in millilitres of oxygen uptake per kg of body mass (VO2max), per kg fat-free mass (VO2maxFFM), or per kg fat mass (VO2maxFM). All analyses were adjusted for age and sex, and when relevant, for body composition.

Results: We found a significant negative genetic correlation between VO2max and body fat% (ρG = -0.72 (SE ±0.13)). The body fat% GRS associated with decreased VO2max (β = -0.15 mL/kg/min per allele, p = 0.0034, age and sex adjusted). The body fat%-increasing FTO allele was associated with a 0.42 mL/kg/min unit decrease in VO2max per allele (p = 0.0092, age and sex adjusted). Both associations were abolished after additional adjustment for body fat%. The fat% increasing GRS and FTO risk allele were associated with decreased VO2maxFM but not with VO2maxFFM.

Conclusions: Our findings suggest a shared genetic etiology between whole body fat% and CRF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112859PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166738PLOS

Publication Analysis

Top Keywords

body fat%
36
body
14
age sex
12
genetic
10
fat%
10
genetic correlation
8
body fat
8
fat percentage
8
cardiorespiratory fitness
8
common genetic
8

Similar Publications

A Bioabsorbable Implant Seeded with Adipose-Derived Stem Cells for Adipose Regeneration.

Tissue Eng Part A

January 2025

Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Adipose tissue engineering requires effective strategies for regenerating adipose tissue, with adipose-derived stem cells (ASCs) being favored due to their robust self-renewal capacity and multipotent differentiation potential. In this study, the efficacy of poly-L-lactic acid (PLLA) mesh containing collagen sponge (CS), seeded with ASCs to promote adipose tissue formation, was investigated. PLLA-CS implants seeded with GFP-positive ASCs were inserted at high concentration (1 × 10 cells/implant, H-ASC) and low concentration (1 × 10 cells/implant, L-ASC), as were unseeded controls.

View Article and Find Full Text PDF

Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.

View Article and Find Full Text PDF

Background: Obtaining information about the growth rates of animals' organs and tissues can help understand their meat production potential and determine the ideal slaughter weight (SW).

Objectives: This study aimed to determine the effects of production system and SW on the allometric growth of the non-carcass components, carcass cuts, and hind limb tissues of Kivircik lambs.

Methods: A total of 54 single-born male lambs were randomly allocated into production systems (concentrate- and pasture-based) and SW groups: 25-26 kg (LOW), 30-31 kg (MEDIUM), and 35-36 kg (HIGH).

View Article and Find Full Text PDF

Autologous adipose tissue grafting (AAG) can provide soft tissue reconstruction in congenital defects, traumatic injuries, cancer care, or cosmetic procedures; over 94,000 AAG procedures are performed in the United States every year. Despite its effectiveness, the efficiency of AAG is limited by unpredictable adipocyte survival, impacting graft volume retention (26-83%). Acellular adipose matrices (AAMs) have emerged as a potential alternative to AAG.

View Article and Find Full Text PDF

Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!