The depletion times of enrofloxacin and its metabolite ciprofloxacin as well as sulfaquinoxaline and oxytetracycline were evaluated in broiler chickens that had been subjected to pharmacological treatment. The presence and residue levels of these drugs in muscle tissue were evaluated using an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method that was validated in this work. The results showed the presence of all antimicrobial residues; however, the presence of residues at concentrations higher than the drugs' maximum residue limit (MRL) of 100 μg kg-1 was found only during the treatment period for oxytetracycline and until two days after discontinuation of the medication for enrofloxacin, ciprofloxacin and sulfaquinoxaline. It was concluded that the residues of all antimicrobials were rapidly metabolized from the broiler muscles; after four days of withdrawal, the levels were lower than the limit of quantification (LOQ) of the method for the studied analytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112995 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166402 | PLOS |
Int J Antimicrob Agents
December 2024
University of Amsterdam, Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, Amsterdam, The Netherlands. Electronic address:
Antibiotic resistance is a growing global healthcare challenge, treatment of bacterial infections with fluoroquinolones being no exception. These antibiotics can induce genetic instability through several mechanisms, one of the most significant being the activation of the SOS response. During exposure to sublethal concentration, this stress response increases mutation rates, accelerating resistance evolution.
View Article and Find Full Text PDFChemosphere
December 2024
Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong, 030600, China.
Antibiotics in surface water have attracted increasing attention because of their potential threats to aquatic ecosystems and public health. Therefore, it is crucial to develop a priority antibiotic list and establish a regulatory framework for antibiotic control. Taking the Fenhe River Basin in North China as the study area, a method to rank priority antibiotics based on their environmental exposure, ecological effects, and human health risks was established.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China. Electronic address:
This study aimed to investigate the differences in the mechanisms of microscopic hepatotoxicity, developmental toxicity, and neurotoxicity in aquatic organisms co-exposed to styrene-butadiene rubber tire microplastics (SBR TMPs) and fluoroquinolone antibiotics (FQs). We found that hepatotoxicity in zebrafish induced by SBR TMPs and FQs was significantly higher than developmental toxicity and neurotoxicity. Furthermore, the main effects of the FQs primarily manifested as synergistic toxicity, whereas the low- and high-order interactions of the FQs mainly exhibited synergistic and antagonistic effects, respectively.
View Article and Find Full Text PDFIndian J Microbiol
December 2024
Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Paraje Arroyo Seco, Campus Universitario, 7000 Tandil, Buenos Aires, Argentina.
Optimization of existing antimicrobial therapies is a strategy proposed for extending antimicrobial activity and delaying resistance development. This study aimed to assess the effect of inactivated CECT7121 (I-EFCECT7121) in a combined therapy with Enrofloxacin or Ciprofloxacin in a Enteritidis murine sepsis model. Firstly, dose titration studies were performed to set up: (a) Enteritidis (SE) Lethal dose 99 (LD99) and (b) safety of I-EFCECT7121 (c) I-EFCECT7121 dosage scheme.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China. Electronic address:
A new nanopalladium surface molecularly imprinted covalent organic framework (MICOF) catalytic probe (Pd@TpPa) for enrofloxacin (ENR) was synthesized by molecular imprinting technology, using 1,3,5-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa) as monomers, ENR as the template molecule, and palladium nanoparticles (PdNP) as the core of nanocatalytic probe. This nanoprobe not only specifically recognizes ENR but also catalyzes the cupric tartrate-glucose (GL) indicator reaction. The amino groups in TpPa replace the tartrate ions, forming a new complex with Cu.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!