Quantitative and qualitative changes in gut microbial composition have been linked to obesity and obesity-related complications, and eating pattern has been shown to significantly impact the gut microbiome. Meanwhile, tea polyphenols are known to have health benefits such as improving glucose tolerance and decreasing liver fat deposition that may be helpful in combating obesity and obesity-related disorders. We therefore studied the effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J Human Flora-Associated (HFA) mice, which were divided into five groups: low fat (LF), high fat (HF), high fat + 0.05% tea polyphenols (HF + 0.05% TP), high fat + 0.2% tea polyphenols (HF + 0.2% TP) and high fat + 0.8% tea polyphenols (HF + 0.8% TP). 16S rRNA V6-V8 region PCR-DGGE profiles showed that a high fat diet was associated with a significant reduction in microbial diversity. This reduction could be alleviated by a HF + 0.2% TP diet, with a significant increase in the number of lactic acid bacteria in the HF + 0.2% TP group compared with the LF group (P < 0.05). Body weight (P < 0.05) and fat pad weight (P < 0.001) were significantly increased in the HF compared with the LF group, with notable adipocyte hypertrophy in the HF group, indicating successful establishment of the high fat model. Body weight among the HF + 0.2% TP group and HF + 0.8% TP group (but not the HF + 0.05% TP group) was significantly lower than the body weight in the HF group (P < 0.01). Therefore, tea polyphenols may effectively retard diet-induced weight gain and body fat gain, adipocyte hypertrophy and hepatic steatosis in a dose-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6fo01150kDOI Listing

Publication Analysis

Top Keywords

tea polyphenols
28
high fat
24
gut microbial
12
microbial diversity
12
fat
12
fat deposition
12
body weight
12
green tea
8
polyphenols gut
8
diversity fat
8

Similar Publications

Tea polyphenol-loaded chitosan/pectin nanoparticle as a nucleating agent for slurry ice production and its application in preservation of large yellow croaker (Pseudosciaena crocea).

Int J Biol Macromol

January 2025

College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China. Electronic address:

Slurry ice preparation experiences considerable supercooling, which can be mitigated by nano-nucleating agents. A nano-nucleating agent (CH/PE-TP NPs) was prepared by ultrasonication-assistant self-assembly of chitosan (CH) and pectin (PE), encapsulated with tea polyphenols (TP). Ultrasonication for 10 min downsized self-assembled aggregates from 5.

View Article and Find Full Text PDF

Phytochemicals in Obesity Management: Mechanisms and Clinical Perspectives.

Curr Nutr Rep

January 2025

Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.

Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.

Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.

View Article and Find Full Text PDF

Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory vascular disease and the primary pathological basis of cardiovascular diseases. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol compound in green tea, has garnered significant attention in recent years for its protective effects against AS. EGCG possesses properties that lower lipid levels, exhibit antioxidant and anti-inflammatory activities, enhance plaque stability, and promote the recovery of endothelial function.

View Article and Find Full Text PDF

Selective Removal of Highly Toxic Selenite by a Biobased Zirconium-Polyphenolic Supramolecular Gel.

Inorg Chem

January 2025

State Key Laboratory of Tea Biology and Utilization, Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.

The green and facile biobased functional materials have attracted great attention due to the promising potential to deal with the water pollution of toxic selenium ions that act as a serious threat to human health and the ecological environment. The development of cheap and eco-friendly approaches to remove SeO is of great significance for the safety of drinking water. However, there are some disadvantages in most of the employed methods, such as poor removal capability, high cost, and unsustainability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!