Ambient light artifacts can confound Raman spectroscopy measurements performed in a clinical setting such as during open surgery. However, requiring light sources to be turned off during intraoperative spectral acquisition can be impractical because it can slow down the procedure by requiring surgeons to acquire data under light conditions different from the routine clinical practice. Here a filter system is introduced allowing in vivo Raman spectroscopy measurements to be performed with the light source of a neurosurgical microscope turned on, without interfering with the standard procedure. Ex vivo and in vivo results on calf and human brain, respectively, show that when the new filter system is used there is no significant difference between Raman spectra acquired under pitch dark conditions or with the microscope light source turned on. This is important for the clinical translation of Raman spectroscopy because of the resulting decrease in total imaging time for each measurement and because the surgeon can now acquire spectroscopic data with no disruption of the surgical workflow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6an02061e | DOI Listing |
J Transl Med
January 2025
Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.
View Article and Find Full Text PDFSci Data
January 2025
Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
Further improvements to lithium-ion and emerging battery technologies can be enabled by an improved understanding of the chemistry and working mechanisms of interphases that form at electrochemically active battery interfaces. However, it is difficult to collect and interpret spectra of interphases for several reasons, including the presence of a variety of compounds. To address this challenge, we herein present a vibrational spectroscopy and X-ray diffraction data library of ten compounds that have been identified as interphase constituents in lithium-ion or emerging battery chemistries.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410006, Hunan, China.
Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
Recurrent aphthous stomatitis (RAS) is a common condition that manifests as ulcerative lesions in the oral mucosa. In this study, bilayer, mucoadhesive nanofibers loaded with pomegranate flower extract (PFE) were prepared using thiolated gelatin (TGel) and thiolated chitosan (TCS) as the active layer and drug-free polycaprolactone (PCL) as the backing layer. Gelatin (Gel) and chitosan (CS) were successfully thiolated (proven by Ellman's assay, solubility, H NMR, FTIR, Raman spectroscopy, and XRD) and electrospun into active nanofibrous layers with a diameter of 356.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!