Although promising from numerous applications, current brain-computer interfaces (BCIs) still suffer from a number of limitations. In particular, they are sensitive to noise, outliers and the non-stationarity of electroencephalographic (EEG) signals, they require long calibration times and are not reliable. Thus, new approaches and tools, notably at the EEG signal processing and classification level, are necessary to address these limitations. Riemannian approaches, spearheaded by the use of covariance matrices, are such a very promising tool slowly adopted by a growing number of researchers. This article, after a quick introduction to Riemannian geometry and a presentation of the BCI-relevant manifolds, reviews how these approaches have been used for EEG-based BCI, in particular for feature representation and learning, classifier design and calibration time reduction. Finally, relevant challenges and promising research directions for EEG signal classification in BCIs are identified, such as feature tracking on manifold or multi-task learning.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2016.2627016DOI Listing

Publication Analysis

Top Keywords

riemannian approaches
8
brain-computer interfaces
8
eeg signal
8
approaches brain-computer
4
interfaces review
4
review promising
4
promising numerous
4
numerous applications
4
applications current
4
current brain-computer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!