Mounting evidence indicates that microRNAs (miRNAs) are involved in multiple processes of osteogenic differentiation. MicroRNA-101 (miR-101), identified as a tumor suppressor, has been implicated in the pathogenesis of several types of cancer. However, the expression of miR-101 and its roles in the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) remain unclear. We found that the miR-101 expression level was significantly increased during the osteogenic differentiation of hBMSCs. MiR-101 depletion suppressed osteogenic differentiation, whereas the overexpression of miR-101 was sufficient to promote this process. We further demonstrated that enhancer of zeste homolog 2 (EZH2) was a target gene of miR-101. EZH2 overexpression and depletion reversed the promoting or suppressing effect of osteogenic differentiation of hBMSCs, respectively, caused by miR-101. In addition, we showed that miR-101 overexpression promoted the expression of Wnt genes, resulting in the activation of the Wnt/β-catenin signaling pathway by targeting EZH2, while the activity of β-catenin and the Wnt/β-catenin signaling pathway was inhibited by ICG-001, a β-Catenin inhibitor, which reversed the promoting effect of miR-101. Finally, miR-101 also promotes in vivo bone formation by hBMSCs. Collectively, these data suggest that miR-101 is induced by osteogenic stimuli and promotes osteogenic differentiation at least partly by targeting the EZH2/Wnt/β-Catenin signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5109541 | PMC |
http://dx.doi.org/10.1038/srep36988 | DOI Listing |
J Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFPeerJ
January 2025
Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
Alveolar bone defects have always been an urgent problem in the oral cavity. For some patients with periodontal disease or undergoing orthodontic treatment or implant restoration, alveolar bone defects can greatly inconvenience clinical diagnosis and treatment. Periodontal ligament stem cells (PDLSCs) are considered a promising source for stem cell therapy due to their high osteogenic differentiation capability.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Bone defects present a significant challenge in orthopedics and trauma surgery, necessitating innovative approaches to stimulate effective bone regeneration. This study investigated the potential of lithium-doped calcium silicate (LiCS) cement to enhance bone regeneration and modulate the immune microenvironment to promote tissue repair. We synthesized a LiCS ceramic powder and performed comprehensive analyses of its physicochemical properties, including phase composition, morphology, setting time, and mechanical strength.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
January 2025
Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
Objective: Osteoimmunology is an emerging field that explores the interplay between bone and the immune system. The immune system plays a critical role in the pathogenesis of diabetes and significantly affects bone homeostasis. Artesunate, a first-line treatment for malaria, is known for its low toxicity and multifunctional properties.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Electronic address:
Steroid-induced osteonecrosis of the femoral head (SANFH) is a common hip joint disease that imposes a heavy economic burden on society. Patients continue to experience bone necrosis even after discontinuing glucocorticoid therapy, and the specific mechanisms require further investigation. The results of this study demonstrate that exosomes secreted by damaged vascular endothelial cells in SANFH lesions may be a crucial factor leading to abnormal adipogenic differentiation of bone marrow stromal cells (BMSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!