A model of signal processing at the isolated hair cell of the frog semicircular canal.

J Comput Neurosci

Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University, Via Borsari 46, I-44121, Ferrara, Italy.

Published: April 2017

A computational model has been developed to simulate the electrical behavior of the type II hair cell dissected from the crista ampullaris of frog semicircular canals. In its basolateral membrane, it hosts a system of four voltage-dependent conductances (g , g , g , g ). The conductance behavior was mathematically described using original patch-clamp experimental data. The transient K current, IA, was isolated as the difference between the currents obtained before and after removing IA inactivation. The remaining current, IKD, results from the summation of a voltage-dependent K current, IKV, a voltage-calcium-dependent K current, IKCa, and the calcium current, ICa. IKD was modeled as a single lumped current, since the physiological role of each component is actually not discernible. To gain a clear understanding of its prominent role in sustaining transmitter release at the cytoneural junction, ICa was modeled under different experimental conditions. The model includes the description of voltage- and time-dependent kinetics for each single current. After imposing any starting holding potential, the system sets the pertinent values of the variables and continually updates them in response to variations in membrane potential. The model reconstructs the individual I-V curves obtained in voltage-clamp experiments and simulations compare favorably with the experimental data. The model proves useful in describing the early steps of signal processing that results from the interaction of the apical receptor current with the basolateral voltage-dependent conductances. The program is thus helpful in understanding aspects of sensory transduction that are hard to analyze in the native hair cell of the crista ampullaris.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10827-016-0631-7DOI Listing

Publication Analysis

Top Keywords

hair cell
12
signal processing
8
frog semicircular
8
crista ampullaris
8
voltage-dependent conductances
8
experimental data
8
current
8
model
5
model signal
4
processing isolated
4

Similar Publications

Skin and hair development is regulated by multitude of programs of activation and silencing of gene expression to maintain normal skin and hair follicle (HF) development, homeostasis, and cycling. Here, we have identified E74-like factor 5 (Elf5) transcription factor, as a novel regulator of keratinocyte proliferation and differentiation processes in skin. Expression analysis has revealed that Elf5 expression was localised and elevated in stem/progenitor cell populations of both the epidermis (basal and suprabasal) and in HF bulge and hair germ stem cell (SCs) compartments during skin and hair development and cycling.

View Article and Find Full Text PDF

Background: Exposures to hazardous noise causes irreversible injury to the structures of the inner ear, leading to changes in hearing and balance function with strong links to age-related cognitive impairment. While the role of noise-induced hearing loss in long-term health consequences, such as progression or development of Alzheimer's Disease (AD) has been suggested, the underlying mechanisms and behavioral and cognitive outcomes or therapeutic solutions to mitigate these changes remain understudied. This study aimed to characterize the association between blast exposure, hearing loss, and the progression of AD pathology, and determine the underlying mechanisms.

View Article and Find Full Text PDF

Background: The increased incidence of androgenic alopecia (AGA) causes adverse physiological and psychological effects on people of all genders. The hair follicle stem cells (HFSCs) have displayed clinical improvements on AGA. However, the molecular mechanism of HFSCs against AGA remains elusive.

View Article and Find Full Text PDF

The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.

View Article and Find Full Text PDF

Death associated protein kinase 1 dampens keratinocyte necroptosis and expression of inflammatory genes in lichen planus.

J Invest Dermatol

December 2024

Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Department of Dermatology, Ludwig-Maximilians University Hospital, Munich, Germany. Electronic address:

Lichen planus (LP) is a chronic inflammatory disease (ISD) affecting skin, mucosa, nail, and hair. Previous studies demonstrated a pivotal role of type 1 immunity in LP, as infiltrating T cells trigger apoptosis and necroptosis in the epidermis. In this study, we investigated the role of DAPK1 in LP with special focus on its role in mediating cell death and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!