A homogeneous preparation of casein kinase II has been isolated from the ribosome-free extracts of Rana temporaria oocytes by means of chromatography on heparin-Sepharose, phosphocellulose and mono Q. The enzyme consists of three subunits with molecular mass of 43 kDa, 41 kDa and 29 kDa. The protein kinase was labelled with radioactive iodine and injected back into oocytes. As shown by histoautoradiography the enzyme forms a diffuse ring around the nucleus in the oocyte cytoplasm. A part of casein kinase II is found in informosomes. During oocytes maturation casein kinase II activity increases 7 h after progesterone administration and at the final stages of maturation (20-23 h). Cycloheximide blocks the second augmentation of kinase activity and does not influence the first one.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1989.tb14666.xDOI Listing

Publication Analysis

Top Keywords

casein kinase
16
rana temporaria
8
temporaria oocytes
8
kda kda
8
kinase activity
8
kinase
5
casein
4
kinase rana
4
oocytes
4
oocytes intracellular
4

Similar Publications

Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes.

View Article and Find Full Text PDF

The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis and limited options for targeted therapies. Identifying new molecular targets to develop novel therapeutic strategies is the pressing immediate issue in T-ALL. Here, we observed high expression of WD Repeat-Containing Protein 5 (WDR5) in T-ALL; with in vitro and in vivo models we demonstrated the oncogenic role of WDR5 in T-ALL by activating cell cycle signaling through its new downstream effector, ATPase family AAA domain-containing 2 (ATAD2).

View Article and Find Full Text PDF

CK2-dependent SK channel dysfunction as contributor to neuronal hyperexcitability in Alzheimer's disease.

Trends Neurosci

January 2025

Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China. Electronic address:

Neuronal hyperexcitability in the cortex and hippocampus represents an early event in Alzheimer's disease (AD). In a recent study, Blankenship and colleagues reported that in a mouse of AD, ventral tegmental area (VTA) dopamine neurons are also hyperexcitable, and this hyperexcitability is due to casein kinase 2 (CK2)-dependent SK channel dysfunction, adding new insights into the underlying mechanisms of aberrant neuronal properties in AD.

View Article and Find Full Text PDF

Development and Discovery of a Selective Degrader of Casein Kinases 1 δ/ε.

J Med Chem

January 2025

Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.

Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!