A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving airway segmentation in computed tomography using leak detection with convolutional networks. | LitMetric

We propose a novel method to improve airway segmentation in thoracic computed tomography (CT) by detecting and removing leaks. Leak detection is formulated as a classification problem, in which a convolutional network (ConvNet) is trained in a supervised fashion to perform the classification task. In order to increase the segmented airway tree length, we take advantage of the fact that multiple segmentations can be extracted from a given airway segmentation algorithm by varying the parameters that influence the tree length and the amount of leaks. We propose a strategy in which the combination of these segmentations after removing leaks can increase the airway tree length while limiting the amount of leaks. This strategy therefore largely circumvents the need for parameter fine-tuning of a given airway segmentation algorithm. The ConvNet was trained and evaluated using a subset of inspiratory thoracic CT scans taken from the COPDGene study. Our method was validated on a separate independent set of the EXACT'09 challenge. We show that our method significantly improves the quality of a given leaky airway segmentation, achieving a higher sensitivity at a low false-positive rate compared to all the state-of-the-art methods that entered in EXACT09, and approaching the performance of the combination of all of them.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2016.11.001DOI Listing

Publication Analysis

Top Keywords

airway segmentation
20
tree length
12
computed tomography
8
leak detection
8
removing leaks
8
convnet trained
8
airway tree
8
segmentation algorithm
8
amount leaks
8
airway
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!