We experimentally demonstrated a plasmon-induced transparency in a metal-insulator-metal (MIM) structure based on the attenuated total reflection (ATR) response. Here, the MIM waveguide (MIMWG) mode and the surface plasmon polariton (SPP) resonance mode acted as low- and high-Q resonance modes, respectively. The dependence of the resonance angles of SPP and MIMWG mode resonances on the incident wavelength differed, which allowed the coupling condition between the two modes to be tuned via the wavelength. When the resonance angles of the two modes coincided, the ATR response showed a symmetric plasmon-induced transparency spectrum; in contrast, when the resonance angles were detuned, the ATR exhibited a sharp asymmetric spectrum characteristic to off-resonance Fano interference.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.41.005274DOI Listing

Publication Analysis

Top Keywords

plasmon-induced transparency
12
resonance angles
12
attenuated total
8
total reflection
8
transparency metal-insulator-metal
8
atr response
8
mimwg mode
8
resonance
5
reflection response
4
response wavelength
4

Similar Publications

Novel terahertz optical switch based on PIT phenomenon and Lorentz theory.

iScience

December 2024

School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China.

We propose and demonstrate a structure consisting of graphene rings and square rings that enables broadband and tunable plasmon-induced transparency (PIT) effects. Through coupled Lorentz model analysis, we attribute the transmission window at 2.1 THz to the interference between the equipartitioned exciton resonance of the graphene ring pairs and the inductive-capacitive resonance of the graphene square ring pairs.

View Article and Find Full Text PDF

Enhancing light-matter interaction is crucial for boosting the performance of nanophotonic devices, which can be achieved via plasmon-induced transparency (PIT). This study introduces what we believe to be a novel E-type metamaterial structure crafted from a single graphene layer. The structure, comprising a longitudinal graphene ribbon and three horizontal graphene strips, leverages destructive interference at terahertz frequencies to manifest triple plasmon-induced transparency (triple-PIT).

View Article and Find Full Text PDF

Sensing Based on Plasmon-Induced Transparency in H-Shaped Graphene-Based Metamaterials.

Nanomaterials (Basel)

June 2024

School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.

Graphene can support surface plasmon polaritons (SPPs) in the terahertz band, and graphene SPP sensors are widely used in the field of terahertz micro- and nano-optical devices. In this paper, we propose an H-shaped graphene metasurface and investigate the plasmon-induced transparency (PIT) phenomenon in the proposed structure using the finite-difference time-domain (FDTD) method. Our results show that the Fermi energy levels, as well as certain shape parameters, can effectively modulate the PIT phenomenon in the proposed structure.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a bifunctional sensor based on carbon nanotubes that achieves high sensitivity and demonstrates slow light properties through a specific metamaterial structure.
  • It utilizes an innovative design with resonators that create double plasmon-induced transparency (PIT) effects due to the interference of light modes, described using a coupled harmonic oscillator model.
  • The sensor exhibits a sensitivity of 1.02 THz RIU, maintains strong performance at various incident angles, and demonstrates a significant time delay of 22.26 ps, making it suitable for advanced applications like sensors and optical memory devices.
View Article and Find Full Text PDF

Two conventional magneto-plasmonic (MP) structures are firstly superimposed with mirror symmetry to form a symmetric MP heterostructure. These two MP components are separated from each other by a noble metallic layer. The unique feature of this novel heterostructure is that both magneto-plasmon modes of the up and down MP portions can be coupled as the spacer becomes thinner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!