Determining time-weighted average concentrations of nitrate and ammonium in freshwaters using DGT with ion exchange membrane-based binding layers.

Environ Sci Process Impacts

Environmental Futures Research Institute, School of Environment, Griffith University, Gold Coast Campus, QLD 4215, Australia.

Published: December 2016

Commercially-available AMI-7001 anion exchange and CMI-7000 cation exchange membranes were utilised as binding layers for DGT measurements of NO-N and NH-N in freshwaters. These ion exchange membranes are easier to prepare and handle than DGT binding layers consisting of hydrogels cast with ion exchange resins. The membranes showed good uptake and elution efficiencies for both NO-N and NH-N. The membrane-based DGTs are suitable for pH 3.5-8.5 and ionic strength ranges (0.0001-0.014 and 0.0003-0.012 mol L as NaCl for the AMI-7001 and CMI-7000 membrane, respectively) typical of most natural freshwaters. The binding membranes had high intrinsic binding capacities for NO-N and NH-N of 911 ± 88 μg and 3512 ± 51 μg, respectively. Interferences from the major competing ions for membrane-based DGTs are similar to DGTs employing resin-based binding layers but with slightly different selectivity. This different selectivity means that the two DGT types can be used in different types of freshwaters. The laboratory and field experiments demonstrated that AMI-DGT and CMI-DGT can be an alternative to A520E-DGT and PrCH-DGT for measuring NO-N and NH-N, respectively, as (i) membrane-based DGT have a consistent composition, (ii) avoid the use of toxic chemicals, (iii) provided highly representative results (C : C between 0.81 and 1.3), and (iv) agreed with resin-based DGTs to within 85-120%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6em00260aDOI Listing

Publication Analysis

Top Keywords

binding layers
16
no-n nh-n
16
ion exchange
12
exchange membranes
8
nh-n membrane-based
8
membrane-based dgts
8
binding
6
dgt
5
exchange
5
determining time-weighted
4

Similar Publications

Enhancement of Transdermal Drug Delivery: Integrating Microneedles with Biodegradable Microparticles.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States.

This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide--glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition.

View Article and Find Full Text PDF

Theoretical insights into spacer molecule design to tune stability, dielectric, and exciton properties in 2D perovskites.

Nanoscale

January 2025

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China.

Two-dimensional organic-inorganic perovskites have garnered extensive interest owing to their unique structure and optoelectronic performance. However, their loose structures complicate the elucidation of mechanisms and tend to cause uncertainty and variations in experimental and calculated results. This can generally be rooted in dynamically swinging spacer molecules through two mechanisms: one is the intrinsic geometric steric effect, and the other is related to the electronic effect orbital overlapping and electronic screening.

View Article and Find Full Text PDF

As the anode material of LIBs, the SnS electrode boasts a reversible specific capacity as high as 1231 mA h g. Additionally, SnS possesses a CdI2-type layered structure with a layer spacing of 0.59 nm, which allows it to accommodate numerous lithium ions and facilitate rapid charge transfer.

View Article and Find Full Text PDF

The performance of heterogeneous catalysis, specifically photochemical and electrochemical hydrogen evolution reaction fundamentally relies upon the prudent choice of catalytic systems with ideal optoelectronic and surface properties. Progressive research in materials processing has hinted at the large-scale applicability of 2D materials for achieving higher activity in the HER process. Among 2D materials, transition metal chalcogenides have emerged as the advanced materials to enhance the rate of HER on account of their layered structure and chalcogen-sites that exhibit favourable hydrogen binding energies.

View Article and Find Full Text PDF

Impact of residual aluminum on nanofiltration gypsum scaling: Mitigation roles played by different species.

Water Res

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:

Residual aluminum (Al) is a growing pollutant in nanofiltration (NF) membrane-based drinking water treatment. To investigate the impact of distinct Al species fouling layers on gypsum scaling during NF, gypsum scaling tests were conducted on bare and three Al-conditioned (AlCl-, Al, and Al-) membranes. The morphology of gypsum, the role of Al species on Ca adsorption during gypsum scaling, and the interactions between gypsum crystals and Al-conditioned membranes were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!