Kinetic equation and nonequilibrium entropy for a quasi-two-dimensional gas.

Phys Rev E

Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain.

Published: October 2016

A kinetic equation for a dilute gas of hard spheres confined between two parallel plates separated a distance smaller than two particle diameters is derived. It is a Boltzmann-like equation, which incorporates the effect of the confinement on the particle collisions. A function S(t) is constructed by adding to the Boltzmann expression a confinement contribution. Then it is shown that for the solutions of the kinetic equation, S(t) increases monotonically in time, until the system reaches a stationary inhomogeneous state, when S becomes the equilibrium entropy of the confined system as derived from equilibrium statistical mechanics. From the entropy, other equilibrium properties are obtained, and molecular dynamics simulations are used to verify some of the theoretical predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.040103DOI Listing

Publication Analysis

Top Keywords

kinetic equation
12
equation nonequilibrium
4
nonequilibrium entropy
4
entropy quasi-two-dimensional
4
quasi-two-dimensional gas
4
gas kinetic
4
equation dilute
4
dilute gas
4
gas hard
4
hard spheres
4

Similar Publications

The orbital-free density functional theory (OF-DFT) based method is a convenient tool to carry out electronic structure calculations scaling almost linearly with the number of electrons. However, the main impediment in the application of this method is the unavailability of the accurate form for the non-interacting kinetic energy functional in terms of electron density. The Pauli kinetic energy functional is the unknown part of the kinetic energy functional, and the corresponding Pauli potential appears in the governing Euler equation.

View Article and Find Full Text PDF

Pressure-dependent kinetic analysis of the NH potential energy surface.

Phys Chem Chem Phys

January 2025

Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.

The pressure-dependent reactions on the NH potential energy surface (PES) have been investigated using CCSD(T)-F12/aug-cc-pVTZ-F12//B2PLYP-D3/aug-cc-pVTZ. This study expands the NH PES beyond the previous literature by incorporating a newly identified isomer, NHN, along with additional bimolecular reaction channels associated with this isomer, namely NNH + H and HNN(S) + H. Rate coefficients for all relevant pressure-dependent reactions, including well-skipping pathways, are predicted using a combination of transition state theory and master equation simulations.

View Article and Find Full Text PDF

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

This report investigates the preparation, characterization, and application of activated carbon derived from Spathodea campanulata flowers (SCAC) to remove Congo Red (CR) dye from aqueous streams. SCAC was synthesized using orthophosphoric acid activation which yielded a mesoporous material with a specific surface area of (986.41 m/g), significantly exceeding values reported for flower-derived activated carbons in the available literature.

View Article and Find Full Text PDF

How hydrodynamic conditions drive the regime shift towards a bacterial state with lower carbon emissions in river bends.

Environ Res

January 2025

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.

Hydrodynamic conditions influenced by river sinuosity may alter carbon (e.g., carbon dioxide and methane) emissions and microbial communities responsible for nutrient turnover.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!