Brewster angle and reflectivity of optically nonuniform dense plasmas.

Phys Rev E

Joint Institute for High Temperatures of RAS, Izhorskaya st. 13, Bld. 2, Moscow 125412, Russia.

Published: October 2016

AI Article Synopsis

Article Abstract

We provide theoretical analysis of the reflectance of shock-compressed plasmas and warm dense matter for normal incidence of laser radiation as well as for the dependence of s- and p-polarized reflectivity on the incidence angle. The self-consistent approach for the calculation of the optical and electronic properties of warm dense matter and nonideal plasmas developed in our previous works is extended for the description of normal and polarized reflectivity from the broadened optically nonuniform medium. Two methods are applied for the calculation of the reflectivity from spatially broadened optically nonuniform medium. The first one is based on the solution of the Helmholtz equation for the amplitudes of the electromagnetic field. Another one is based on Drude theory of reflection. It allows us to calculate the ratio of the s- and p-polarized reflectivity if dependence of the dielectric function on distance is known. For the case of the polarized reflectivity, the particular attention is concentrated on the Brewster angle. The calculation results for the dielectric function, obtained within the framework of the density-functional theory with the longitudinal expression for the dielectric tensor, are applied for the calculation of the reflectivity. Comparison with the experimental data for shock-compressed xenon is performed.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.043202DOI Listing

Publication Analysis

Top Keywords

optically nonuniform
12
brewster angle
8
warm dense
8
dense matter
8
p-polarized reflectivity
8
polarized reflectivity
8
broadened optically
8
nonuniform medium
8
applied calculation
8
calculation reflectivity
8

Similar Publications

In this study, we utilized a discrete point configuration method in conjunction with genetic algorithm (GA) and particle swarm optimization (PSO) to design broadband polarization-maintaining anti-resonant fibers (PM-ARFs). The resulting structure features a confinement loss (CL) below 0.17 dB/m, birefringence of approximately 8.

View Article and Find Full Text PDF

In this Letter, we show the attraction of a microbubble at a fiber end face by the solute Marangoni force. The microbubble is formed by partial filling of an ethanol-water mixture in the microcavity that is spliced to the end face of a single-mode fiber. Due to different surface tension of ethanol and water, the uneven temperature gradient induced by a laser causes the non-uniform distribution of ethanol-water molecules on the bubble surface.

View Article and Find Full Text PDF

Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting and monitoring in-service degradation of the joint. Several techniques suitable for long-term joint integrity monitoring are proposed.

View Article and Find Full Text PDF

Optically Decoupling Electrochromic Dynamics and Morphological Evolution of a Single Soft Polyaniline Nanoentity.

Nano Lett

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Electroresponsive multicolored materials have tremendous potential in flexible electronics and smart wearable devices. Herein, the electrochromic dynamics and morphological evolution of a single soft polyaniline nanoentity can be visualized and decoupled by an opto-electrochemical imaging strategy. The durability, tinting speed, and reversibility down to the single-nanoparticle level are quantified, and the switching of transient intermediate electrochromic states is trapped.

View Article and Find Full Text PDF

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!