Using a metadynamics approach, we investigate the potential of mean force for Na permeation inside a cyclic peptide nanotube (CPN) with modified interior as a function of ion position, coordination number, and lumen chemistry. We show that functionalizing the lumen of a CPN with a methyl-benzoic acid group introduces non-periodic variations in the internal energy of the nanotube, which dictate the overall free energy roughness during the permeation of Na. These non-periodic variations arise from the structural dynamics of the functional group, where changes in the dihedral angles induced by the proximity of the ion give rise to conformational changes that increase landscape roughness and thereby decrease transport rate. Our computational framework emphasizes the advantages of using the coordination number as a collective variable to investigate the available conformations during ion permeation through CPNs, and reveals new structure-function relations for chemically tunable CPNs, paving the way for rational design of nano-porous systems with tunable selectivity and flux.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp06585f | DOI Listing |
Chem Biodivers
January 2025
SRM Institute of Science and Technology - NCR Campus, chemistry, Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Camp, India, 241405, Modinagar, INDIA.
This review paper provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly Hemoglobin (Hb), Bovine Serum Albumin (BSA), Human Serum Albumin (HSA), and Calf Thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques.
View Article and Find Full Text PDFSoft Matter
January 2025
College of Chemistry, Sichuan University, Chengdu 610064, China.
Biomolecules usually adopt ubiquitous circular structures which are important for their functionality. Based on three-dimensional Langevin dynamics simulations, we investigate the conformational change of a polymer confined in a spherical cavity. Both passive and active polymers with either homogeneous or heterogeneous stiffness are analyzed in a comparative manner.
View Article and Find Full Text PDFAngiotensin-I converting enzyme (ACE) regulates the levels of disparate bioactive peptides, notably converting angiotensin-I to angiotensin-II and degrading amyloid beta. ACE is a heavily glycosylated dimer, containing 4 analogous catalytic sites, and exists in membrane bound and soluble (sACE) forms. ACE inhibition is a frontline, FDA-approved, therapy for cardiovascular diseases yet is associated with significant side effects, including higher rates of lung cancer.
View Article and Find Full Text PDFWe introduce Hydrogen-Exchange Experimental Structure Prediction (HX-ESP), a method that integrates hydrogen exchange (HX) data with molecular dynamics (MD) simulations to accurately predict ligand binding modes, even for targets requiring significant conformational changes. Benchmarking HX-ESP by fitting two ligands to PAK1 and four ligands to MAP4K1 (HPK1), and comparing the results to X-ray crystallography structures, demonstrated that HX-ESP successfully identified binding modes across a range of affinities significantly outperforming flexible docking for ligands necessitating large conformational adjustments. By objectively guiding simulations with experimental HX data, HX-ESP overcomes the long timescales required for binding predictions using traditional MD.
View Article and Find Full Text PDFIn eukaryotes, mismatch repair begins with M ut S h omolog (MSH) complexes, which scan newly replicated DNA for mismatches. Upon mismatch detection, MSH complexes recruit the PCNA- stimulated endonuclease Mlh1-Pms1/PMS2 (yeast/human), which nicks the DNA to allow downstream proteins to remove the mismatch. Past work has shown that although Mlh1-Pms1 is an ATPase and this activity is important , ATP is not required to nick DNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!