Design of luciferase-displaying protein nanoparticles for use as highly sensitive immunoassay detection probes.

Analyst

Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.

Published: November 2016

In this study, we developed a protein nanoparticle-based immunoassay to detect cancer biomarkers using a bioluminescent fusion protein. This method relies on the use of protein nanoparticles comprised of genetically-engineered elastin-like polypeptides (ELPs) fused with poly-aspartic acid tails (ELP-D), previously developed in our lab. The sizes of the self-assembled ELP-D nanoparticles can be regulated at the nanoscale by charged repulsion of the poly-aspartic acid chains. To improve the sensitivity of enzyme-linked immunosorbent assays (ELISAs), we herein demonstrate the multivalent display of NanoLuc® (Nluc) luciferase and a biotin acceptor peptide (BAP) on the surfaces of ELP-D nanoparticles, and demonstrate the sensitivity of these multivalent nanoparticles as detection probes. The fusion protein comprised of ELP-D and Nluc-BAP (ELP-D-Nluc-BAP) was found to form nanoparticles with Nluc and BAP displayed multivalently on their surfaces. Moreover, the use of the nanoparticles in ELISA resulted in a detection sensitivity for α-fetoprotein (AFP) about 10 times higher than that of an assay relying on the use of the monomeric version of the fusion protein. Taken together, ELP-D-based nanoparticles displaying multivalent luciferases on their surfaces enable the construction of an ELISA with enhanced sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6an01253aDOI Listing

Publication Analysis

Top Keywords

fusion protein
12
nanoparticles
8
protein nanoparticles
8
detection probes
8
poly-aspartic acid
8
elp-d nanoparticles
8
protein
6
design luciferase-displaying
4
luciferase-displaying protein
4
nanoparticles highly
4

Similar Publications

A Granzyme B-Cleavable T Cell-Targeted Bispecific Cell Vesicle Connector for Reversing New-Onset Type 1 Diabetes.

J Am Chem Soc

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8 T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection.

View Article and Find Full Text PDF

Arabidopsis has served as a model plant for studying the genetic networks that guide gynoecium development. However, less is known about other species such as tomato, a model for fleshy fruit development and ripening. Here, we study in tomato the transcription factor SPATULA (SPT), a bHLH-family member that in Arabidopsis is known to be important for gynoecium development.

View Article and Find Full Text PDF

Synthetic lethality approaches in BRCA1/2-mutated cancers have focused on poly(ADP-ribose) polymerase (PARP) inhibitors, which are subject to high rates of innate or acquired resistance in patients. Here, we used CRISPR/Cas9-based screening to identify DNA Ligase I (LIG1) as a novel target for synthetic lethality in BRCA1-mutated cancers. Publicly available data supported LIG1 hyperdependence of BRCA1-mutant cells across a variety of breast and ovarian cancer cell lines.

View Article and Find Full Text PDF

The concentrations of individual proteins vary between cells, both developmentally and stochastically. The functional consequences of this variation remain largely unexplored due to limited experimental tools to manipulate the relationship of protein concentration to activity. Here, we introduce a genetically encoded tool based on a tunable amyloid that enables precise control of protein concentration thresholds in cells.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) in the stroma of solid tumors promote an immunosuppressive tumor microenvironment (TME) that drives resistance to therapies. The expression of the protease fibroblast activation protein (FAP) on the surface of CAFs has made FAP a target for development of therapies to dampen immunosuppression. Relatively few biologics have been developed for FAP and none have been developed that exploit the unique engagement properties of Variable New Antigen Receptors (VNARs) from shark antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!