As an exceedingly recalcitrant and highly aggressive tumor type without Food and Drug Administration-approved treatment or a known cure, the prognosis of recurrent extensive stage platinum-resistant/refractory small cell lung cancer (SCLC) is worse than other types of lung cancer, and many other tumor types, given a response rate of less than 10% and an overall survival of less than six months. It was broadly classified into three groups based on the initial response to cisplatin/etoposide therapy, platinum-refractory, platinum-resistant, and platinum-sensitive, extensive stage SCLC inevitably relapses, at which point the only standard options are to rechallenge with the first-line chemotherapeutic regimen in the case of sensitive disease or to start the topoisomerase I inhibitor, topotecan. Sensitive disease is defined by a response to the first-line therapy and a treatment-free interval of at least 90 days, while the definitions of refractory and resistant disease, respectively, are nonresponse to the first-line treatment or relapse within 90 days. As an important predictor of response to the second-line treatment, the clinical cutoff of three months (or two months in some cases) for resistant and sensitive disease, which along with performance status prognostically separates patients into high- and low-risk categories, dictates subsequent management. This case report presents a resistant SCLC patient enrolled on a Phase II clinical trial called QUADRUPLE THREAT (formerly TRIPLE THREAT; NCT02489903) who responded to reintroduced platinum doublets after sequential priming with the resistance-reversing epi-immunotherapeutic agent, RRx-001. In the QUADRUPLE THREAT clinical trial, both during priming with RRx-001 and during sequential treatment with platinum doublets, the patient maintained a good quality of life and performance status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098407 | PMC |
http://dx.doi.org/10.4137/CMO.S40429 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Lung cancer is correlated with a high death rate, with approximately 1.8 million mortality cases reported worldwide in 2022. Despite development in the control of lung cancer, most cases are detected at higher stages with short survival rates.
View Article and Find Full Text PDFMicrorna
January 2025
School of Biosciences, Apeejay Stya University Gurugram, Sohna-Palwal Road, Haryana-122103, India.
MicroRNA abundance as a particular biomarker for precisely identifying cancer metastases has emerged in recent years. The expression levels of miRNA are analyzed to get insights into cancer tissue detection and subtypes. Similar to other cancer types, the miRNA shows high levels of target mRNA dysregulation in association with non-small cell lung carcinoma (NSCLC).
View Article and Find Full Text PDFMol Pharm
January 2025
School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.
Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.
View Article and Find Full Text PDFCell Rep
January 2025
The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China. Electronic address:
CD8 T cell exhaustion (Tex) has been widely acknowledged in human cancer, while the underlying mechanisms remain unclear. Here, we demonstrate that reduced amino acid (aa) metabolism and mTOR inactivation are accountable for Tex in human non-small cell lung cancer (NSCLC). NSCLC cells impede the T cell-intrinsic transcription of SLC7A5 and SLC38A1, disrupting aa transport and consequently leading to mTOR inactivation.
View Article and Find Full Text PDFCancer Commun (Lond)
January 2025
Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!