Oxidative stress is implicated in various human diseases and conditions, such as a neurodegeneration, which is the major symptom of vitamin B deficiency, although the underlying disease mechanisms associated with vitamin B deficiency are poorly understood. Vitamin B deficiency was found to significantly increase cellular HO and NO content in Caenorhabditis elegans and significantly decrease low molecular antioxidant [reduced glutathione (GSH) and L-ascorbic acid] levels and antioxidant enzyme (superoxide dismutase and catalase) activities, indicating that vitamin B deficiency induces severe oxidative stress leading to oxidative damage of various cellular components in worms. An NaCl chemotaxis associative learning assay indicated that vitamin B deficiency did not affect learning ability but impaired memory retention ability, which decreased to approximately 58% of the control value. When worms were treated with 1mmol/L GSH, L-ascorbic acid, or vitamin E for three generations during vitamin B deficiency, cellular malondialdehyde content as an index of oxidative stress decreased to the control level, but the impairment of memory retention ability was not completely reversed (up to approximately 50%). These results suggest that memory retention impairment formed during vitamin B deficiency is partially attributable to oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5107735 | PMC |
http://dx.doi.org/10.1016/j.redox.2016.10.013 | DOI Listing |
Retin Cases Brief Rep
December 2024
Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
Purpose: To report a case of bilateral anterior uveitis, pigmentary retinopathy, and pars plana exudates in a patient with Celiac disease with complete resolution of inflammation following gluten-free diet.
Methods: Retrospective case report.
Results: A 19-year-old Asian Indian girl presented with bilateral non-granulomatous anterior uveitis for the past 2 months.
PLoS One
January 2025
Department of Encephalopathy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
Background: Vitamin D is thought to play a role in the development of migraine, but the nature of the relationship is still not fully understood. Although some studies have shown an association between vitamin D deficiency and migraine, other studies have had inconsistent or inconclusive results. Therefore, further research is needed to better understand the relationship between vitamin D and migraine headaches.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK.
Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Stark Neurosciences Research Institute, Department of Neurology, Indianapolis, IN, USA.
Background: Diagnosis of Alzheimer's disease (AD) via MRI is costly and can be limited by regional availability. With the recent advancements and discovery of amyloid in the retina, diagnosis of AD and the effect of AD pathology on the retina is becoming well characterized. However, the prevalence of vascular contributions to cognitive impairment and dementia (VCID) and its effects on the retina are less well known.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: Brain endothelial cell (EC) stress, including that induced by vascular amyloid β (Aβ) deposits in cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD), contributes to cerebral blood flow impairment, blood brain barrier (BBB) damage, neurovascular unit dysfunction, microhemorrhages and hypoperfusion, precipitating neurodegeneration and neuroinflammation processes. Epidemiological and experimental evidence suggests that hyperhomocysteinemia (Hhcy) contributes to increasing AD risk as well as CAA pathology. However, the cellular and molecular mechanisms through which Aβ and Hhcy drive EC and BBB dysfunction, whether the molecular effects of these challenges are additive or independent, and possible therapeutic strategies, remain to be determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!