Glucosylceramide transferase in Giardia preferentially catalyzes the synthesis of galactosylceramide during encystation.

Mol Biochem Parasitol

Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.

Published: January 2017

The stage differentiation from trophozoite to cyst (i.e., encystation) is an essential step for Giardia to survive outside its human host and spread the infection via the fecal-oral route. We have previously shown that Giardia expresses glucosylceramide transferase 1 (GlcT1) enzyme, the activity of which is elevated during encystation. We have also reported that blocking the activity of gGlcT1 interferes with the biogenesis of encystation-specific vesicles (ESVs) and cyst viability in Giardia. To further understand the role of this enzyme and how it regulates encystation, we overexpressed, knocked down, and rescued the giardial GlcT1 (gGlcT1) gene and measured its enzymatic activity in live parasites as well as in isolated membrane fractions using NBD-ceramide and UDP-glucose or UDP-galactose. We observed that gGlcT1 is able to catalyze the synthesis of both glucosylceramide (GlcCer) and galactosylceramide (GalCer), however the synthesis of GalCer is 2-3 fold higher than of GlcCer. Although both activities follow Michaelis-Menten kinetics, the bindings of UDP-glucose and UDP-galactose with the enzyme appear to be non-competitive and independent of each other. The modulation of gGlcT1 synthesis concomitantly influenced the expression cyst-wall protein (CWP) and overall encystation. We propose that gGlcT1 is a unique enzyme and that Giardia uses this enzyme to synthesize both GlcCer and GalCer to facilitate the process of encystation/cyst production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5222682PMC
http://dx.doi.org/10.1016/j.molbiopara.2016.11.001DOI Listing

Publication Analysis

Top Keywords

glucosylceramide transferase
8
udp-glucose udp-galactose
8
giardia
5
encystation
5
enzyme
5
gglct1
5
transferase giardia
4
giardia preferentially
4
preferentially catalyzes
4
synthesis
4

Similar Publications

Hepatocellular carcinoma () is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth.

View Article and Find Full Text PDF

Inhibiting UGCG prevents PRV infection by decreasing lysosome-associated autophage.

Int J Biol Macromol

January 2025

School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China. Electronic address:

Glucosylceramide synthase (UGCG) is a key enzyme that catalyzes the initial glycosylation step in the biosynthesis of glycosphingolipids (GSLs) derived from glucosylceramide. UGCG is closely associated with various cellular processes, including the cell cycle, angiogenesis, multidrug resistance, and pathogen invasion. In this study, a short hairpin RNA (shRNA) library designed to target key genes involved in the sphingolipid metabolic pathway was utilized to elucidate their roles in Pseudorabies Virus (PRV).

View Article and Find Full Text PDF

Glucosylceramide synthase inhibitor ameliorates chronic inflammatory pain.

J Pharmacol Sci

December 2024

Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan. Electronic address:

Article Synopsis
  • - Gangliosides are important for functions in nerve cells, influencing processes like growth, communication, and degeneration.
  • - Research indicated that mice given gangliosides made from glucosylceramide experienced heightened sensitivity to touch, known as mechanical allodynia.
  • - The study found that using glucosylceramide inhibitors helped decrease this sensitivity during inflammation in mice, highlighting the potential of targeting gangliosides for pain relief.
View Article and Find Full Text PDF

In humans and in mice, maternal allergy predisposes offspring to development of allergy. In murine models, increased levels of maternal β-glucosylceramides are both necessary and sufficient for the development of allergic predisposition in offspring. Furthermore, increased numbers of CD11b+ dendritic cell subsets in the offspring of allergic mothers are associated with allergic predisposition.

View Article and Find Full Text PDF

Ceramide metabolism alterations contribute to Tumor Necrosis Factor-induced melanoma dedifferentiation and predict resistance to immune checkpoint inhibitors in advanced melanoma patients.

Front Immunol

August 2024

Unité Mixte de Recherche Intitut National de la Santé et de la Recherche Médicale (INSERM) 1037, Centre National de la Recherche Scientifique (CNRS) 5071, Université Toulouse III - Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France.

Introduction: Advanced cutaneous melanoma is a skin cancer characterized by a poor prognosis and high metastatic potential. During metastatic spread, melanoma cells often undergo dedifferentiation toward an invasive phenotype, resulting in reduced expression of microphthalmia-associated transcription factor (MITF)-dependent melanoma antigens and facilitating immune escape. Tumor Necrosis Factor (TNF) is known to be a key factor in melanoma dedifferentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!