Genetic analysis of CHCHD2 in a southern Spanish population.

Neurobiol Aging

Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Electronic address:

Published: February 2017

Researching genetic factors involved in Parkinson's disease (PD) is crucial to increase our knowledge about the pathophysiology of the disorder. A missense mutation has recently been reported within CHCHD2, a gene newly associated with autosomal dominant PD. Subsequent studies in different ethnic populations have not reached any conclusive result about the role of CHCHD2 in PD. Therefore, the aim of this study was to investigate the implication of this gene for a PD population from southern Spain (including 536 PD patients and 518 unrelated control subjects). We studied all 4 exons of CHCHD2 and their exon-intron boundary regions. Four variants were observed in non-coding regions. No significant differences were observed in the allele frequencies of these variants between patients and controls. Thus, our study suggests that CHCHD2 is probably not involved in the etiopathogenesis of PD in our population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2016.10.019DOI Listing

Publication Analysis

Top Keywords

chchd2
5
genetic analysis
4
analysis chchd2
4
chchd2 southern
4
southern spanish
4
spanish population
4
population researching
4
researching genetic
4
genetic factors
4
factors involved
4

Similar Publications

Mitochondrial dysfunction in Parkinson's disease.

J Neural Transm (Vienna)

December 2024

Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.

Article Synopsis
  • The exact cause of nigral cell death in Parkinson's disease (PD) is still unclear, but research has made significant progress using models like MPTP-induced experimental parkinsonism, highlighting mitochondrial failure as a key factor in cell death.
  • Many studies have linked mitochondrial dysfunction to PD, observing deficiencies in mitochondrial complexes (specifically Complex I and III) in various tissues of PD patients, though there’s some debate on its impact in peripheral organs.
  • Mutations in mitochondrial DNA and involvement of specific genes related to mitochondrial quality control (like parkin and PINK1) further suggest that mitochondrial issues play a crucial role in the pathophysiology of PD.
View Article and Find Full Text PDF

Neuroprotective role of CHCHD2 in Parkinson's disease: Insights into the GPX4-related ferroptosis pathway.

Free Radic Biol Med

January 2025

Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China; Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China. Electronic address:

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by pathogenesis involving mitochondrial dysfunction, oxidative stress, and ferroptosis. Unfortunately, there are currently no effective interventions to slow down the progression of PD. The mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), which is implicated in neurodegeneration and serves as a biomarker for PD, has been reported to have neuroprotective effects against oxidative stress, but the potential molecular mechanisms involved remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates population-stratifying and ancestry-informative genetic markers in Indian, Chinese, and wild yak using whole genome resequencing to enhance our understanding of their genetics and ancestry.
  • It analyzes data from 105 yak individuals, identifying over a million high-quality SNP markers, and compares different selection strategies and marker densities to determine the most effective for clustering these populations.
  • The results indicate that a specific marker density (10K) yields the highest genomic breed clustering accuracy, significantly improving estimates of genetic differentiation among the three yak populations.
View Article and Find Full Text PDF

CHCHD10 knock-in zebrafish display a mild ALS-like phenotype.

Exp Neurol

December 2024

Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Canada. Electronic address:

Mutations in the nuclear-encoded mitochondrial gene CHCHD10 have been observed in patients with a spectrum of diseases that include amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). To investigate the pathogenic nature of disease-associated variants of CHCHD10 we generated a zebrafish knock-in (KI) model expressing the orthologous ALS-associated CHCHD10 variant (zebrafish: Chchd10). Larval chchd10 fish displayed reduced Chchd10 protein expression levels, motor impairment, reduced survival and abnormal neuromuscular junctions (NMJ).

View Article and Find Full Text PDF

Mutations in the mitochondrial cristae protein CHCHD2 lead to a late-onset autosomal dominant form of Parkinson's disease (PD) which closely resembles idiopathic PD, providing the opportunity to gain new insights into the mechanisms of mitochondrial dysfunction contributing to PD. To begin to address this, we used CRISPR genome-editing to generate CHCHD2 T61I point mutant mice. CHCHD2 T61I mice had normal viability, and had only subtle motor deficits with no signs of premature dopaminergic (DA) neuron degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!