Ascochyta rabiei and Alternaria solani, the causal agents of Ascochyta blight of chickpea (Cicer arietinum) and early blight of potato (Solanum tuberosum), respectively, produce a set of phytotoxic compounds including solanapyrones A, B, and C. Although both the phytotoxicity of solanapyrones and their universal production among field isolates have been documented, the role of solanapyrones in pathogenicity is not well understood. Here, we report the functional characterization of the sol5 gene, which encodes a Diels-Alderase that catalyzes the final step of solanapyrone biosynthesis. Deletion of sol5 in both Ascochyta rabiei and Alternaria solani completely prevented production of solanapyrones and led to accumulation of the immediate precursor compound, prosolanapyrone II-diol, which is not toxic to plants. Deletion of sol5 did not negatively affect growth rate or spore production in vitro, and led to overexpression of the other solanapyrone biosynthesis genes, suggesting a possible feedback regulation mechanism. Phytotoxicity tests showed that solanapyrone A is highly toxic to several legume species and Arabidopsis thaliana. Despite the apparent phytotoxicity of solanapyrone A, pathogenicity tests showed that solanapyrone-minus mutants of Ascochyta rabiei and Alternaria solani were equally virulent as their corresponding wild-type progenitors, suggesting that solanapyrones are not required for pathogenicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-08-14-0234-R.testissue | DOI Listing |
Sci Rep
December 2024
Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.
View Article and Find Full Text PDFMicrob Genom
November 2024
Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia.
Sci Rep
October 2024
School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
Front Plant Sci
August 2024
Department of Primary Industry Research and Development, Tamworth Agricultural Institute, Tamworth, New South Wales, Australia.
Introduction: Ascochyta blight (AB) caused by the necrotrophic fungus is one of the most significant diseases that limit the production of chickpea. Understanding the metabolic mechanisms underlying chickpea- interactions will provide important clues to develop novel approaches to manage this disease.
Methods: We performed metabolite profiling of the aerial tissue (leaf and stem) of two chickpea accessions comprising a moderately resistant breeding line (CICA1841) and a highly susceptible cultivar (Kyabra) in response to one of the highly aggressive Australian isolates TR9571 via non-targeted metabolomics analysis using liquid chromatography-mass spectrometry.
Heliyon
August 2024
Department of Plant Protection, Faculty of Agriculture, Çukurova University, Sarıçam, Adana, Turkey.
Ascochyta blight is a disease that causes significant yield losses in chickpea crops in Turkey under favorable environmental conditions. The fungal pathogen is the causative agent of this disease. The antifungal activity of previous fungicides against was not effective due to the heterothallic nature of the fungus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!