A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Liquid-liquid phase separation of a monoclonal antibody at low ionic strength: Influence of anion charge and concentration. | LitMetric

Liquid-liquid phase separation of a monoclonal antibody at low ionic strength: Influence of anion charge and concentration.

Biophys Chem

Boehringer Ingelheim Pharma GmbH & Co. KG, Protein Science, Birkendorfer Strasse 65, 88397 Biberach/Riss, Germany; Martin-Luther-University Halle-Wittenberg, Germany. Electronic address:

Published: January 2017

Liquid-liquid phase separation (LLPS) of a monoclonal antibody solution was investigated at low ionic strength in the presence of oligovalent anions, such as citrate, trimellitate, pyromellitate and mellitate. Phase separation was observed at the isoelectric point of the antibody at pH8.7 as well as in more acidic pH regions in the presence of the tested oligovalent ions. This can be attributed to charge neutralization via binding of the oligovalent anions to the positively charged antibody. The influence of the anion concentration on liquid-liquid phase separation with respect to the net charge of the antibody was examined. Similarities to the formation of a complex coacervate were shown to apply. These findings enable us to understand the usage of excipients to rationally induce or avoid liquid-liquid phase separation at low ionic strength. Furthermore we present a method to directly examine the competition of different ions for the solvation shell, called buffer equilibration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2016.08.003DOI Listing

Publication Analysis

Top Keywords

phase separation
20
liquid-liquid phase
16
low ionic
12
ionic strength
12
monoclonal antibody
8
influence anion
8
concentration liquid-liquid
8
oligovalent anions
8
separation
5
antibody
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!